Results 1  10
of
98
Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra
 Journal of the ACM
, 1995
"... We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient ..."
Abstract

Cited by 195 (8 self)
 Add to MetaCart
We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient for deciding satisfiability. Further, using an extensive machinegenerated case analysis, we show that the ORDHorn subclass is a maximal tractable subclass of the full algebra (assuming<F NaN> P6=NP). In fact, it is the unique greatest tractable subclass amongst the subclasses that contain all basic relations. This work has been supported by the German Ministry for Research and Technology (BMFT) under grant ITW 8901 8 as part of the WIP project and under grant ITW 9201 as part of the TACOS project. 1 1 Introduction Temporal information is often conveyed qualitatively by specifying the relative positions of time intervals such as ". . . point to the figure while explaining the performance of the system . . . "...
Closure Properties of Constraints
 Journal of the ACM
, 1997
"... Many combinatorial search problems can be expressed as `constraint satisfaction problems', and this class of problems is known to be NPcomplete in general. In this paper we investigate the subclasses which arise from restricting the possible constraint types. We first show that any set of cons ..."
Abstract

Cited by 182 (22 self)
 Add to MetaCart
(Show Context)
Many combinatorial search problems can be expressed as `constraint satisfaction problems', and this class of problems is known to be NPcomplete in general. In this paper we investigate the subclasses which arise from restricting the possible constraint types. We first show that any set of constraints which does not give rise to an NPcomplete class of problems must satisfy a certain type of algebraic closure condition. We then investigate all the different possible forms of this algebraic closure property, and establish which of these are sufficient to ensure tractability. As examples, we show that all known classes of tractable constraints over finite domains can be characterised by such an algebraic closure property. Finally, we describe a simple computational procedure which can be used to determine the closure properties of a given set of constraints. This procedure involves solving a particular constraint satisfaction problem, which we call an `indicator problem'. Keywords: Cons...
On the Complexity of Qualitative Spatial Reasoning: A Maximal Tractable Fragment of the Region Connection Calculus
 Artificial Intelligence
, 1997
"... The computational properties of qualitative spatial reasoning have been investigated to some degree. However, the question for the boundary between polynomial and NPhard reasoning problems has not been addressed yet. In this paper we explore this boundary in the "Region Connection Calculus&quo ..."
Abstract

Cited by 141 (23 self)
 Add to MetaCart
(Show Context)
The computational properties of qualitative spatial reasoning have been investigated to some degree. However, the question for the boundary between polynomial and NPhard reasoning problems has not been addressed yet. In this paper we explore this boundary in the "Region Connection Calculus" RCC8. We extend Bennett's encoding of RCC8 in modal logic. Based on this encoding, we prove that reasoning is NPcomplete in general and identify a maximal tractable subset of the relations in RCC8 that contains all base relations. Further, we show that for this subset pathconsistency is sufficient for deciding consistency. 1 Introduction When describing a spatial configuration or when reasoning about such a configuration, often it is not possible or desirable to obtain precise, quantitative data. In these cases, qualitative reasoning about spatial configurations may be used. One particular approach in this context has been developed by Randell, Cui, and Cohn [20], the socalled Region Connecti...
Algebraic structures in combinatorial problems
 TECHNICAL REPORT, TECHNISCHE UNIVERSITAT DRESDEN
, 2001
"... ..."
Backtracking Algorithms for Disjunctions of Temporal Constraints
 Artificial Intelligence
, 1998
"... We extend the framework of simple temporal problems studied originally by Dechter, Meiri and Pearl to consider constraints of the form x1 \Gamma y1 r1 : : : xn \Gamma yn rn , where x1 : : : xn ; y1 : : : yn are variables ranging over the real numbers, r1 : : : rn are real constants, and n 1. W ..."
Abstract

Cited by 117 (2 self)
 Add to MetaCart
We extend the framework of simple temporal problems studied originally by Dechter, Meiri and Pearl to consider constraints of the form x1 \Gamma y1 r1 : : : xn \Gamma yn rn , where x1 : : : xn ; y1 : : : yn are variables ranging over the real numbers, r1 : : : rn are real constants, and n 1. We have implemented four progressively more efficient algorithms for the consistency checking problem for this class of temporal constraints. We have partially ordered those algorithms according to the number of visited search nodes and the number of performed consistency checks. Finally, we have carried out a series of experimental results on the location of the hard region. The results show that hard problems occur at a critical value of the ratio of disjunctions to variables. This value is between 6 and 7. Introduction Reasoning with temporal constraints has been a hot research topic for the last fifteen years. The importance of this problem has been demonstrated in many areas of artifici...
Constraints, Consistency, and Closure
 Artificial Intelligence
, 1998
"... Although the constraint satisfaction problem is NPcomplete in general, a number of constraint classes have been identified for which some fixed level of local consistency is sufficient to ensure global consistency. In this paper, we describe a simple algebraic property which characterises all possi ..."
Abstract

Cited by 71 (14 self)
 Add to MetaCart
(Show Context)
Although the constraint satisfaction problem is NPcomplete in general, a number of constraint classes have been identified for which some fixed level of local consistency is sufficient to ensure global consistency. In this paper, we describe a simple algebraic property which characterises all possible constraint types for which strong kconsistency is sufficient to ensure global consistency, for each k ? 2. We give a number of examples to illustrate the application of this result. 1 Introduction The constraint satisfaction problem provides a framework in which it is possible to express, in a natural way, many combinatorial problems encountered in artificial intelligence and elsewhere. The aim in a constraint satisfaction problem is to find an assignment of values to a given set of variables subject to constraints on the values which can be assigned simultaneously to certain specified subsets of variables. The constraint satisfaction problem is known to be an NPcomplete problem in ge...
Solving Hard Qualitative Temporal Reasoning Problems: Evaluating the Efficiency of Using the ORDHorn Class
 Constraints
, 1997
"... While the worstcase computational properties of Allen's calculus for qualitative temporal reasoning have been analyzed quite extensively, the determination of the empirical efficiency of algorithms for solving the consistency problem in this calculus has received only little research attent ..."
Abstract

Cited by 68 (6 self)
 Add to MetaCart
While the worstcase computational properties of Allen's calculus for qualitative temporal reasoning have been analyzed quite extensively, the determination of the empirical efficiency of algorithms for solving the consistency problem in this calculus has received only little research attention. In this paper, we will demonstrate that using the ORDHorn class in Ladkin and Reinefeld's backtracking algorithm leads to performance improvements when deciding consistency of hard instances in Allen's calculus. For this purpose, we prove that Ladkin and Reinefeld's algorithm is complete when using the ORDHorn class, we identify phase transition regions of the reasoning problem, and compare the improvements of ORDHorn with other heuristic methods when applied to instances in the phase transition region. Finally, we give evidence that combining search methods orthogonally can dramatically improve the performance of the backtracking algorithm. Contents 1 Introduction 1 2 Allen's...
Constraint Satisfaction Problems And Finite Algebras
, 1999
"... Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types c ..."
Abstract

Cited by 66 (9 self)
 Add to MetaCart
(Show Context)
Many natural combinatorial problems can be expressed as constraint satisfaction problems. This class of problems is known to be NPcomplete in general, but certain restrictions on the form of the constraints can ensure tractability. In this paper we show that any restricted set of constraint types can be associated with a finite universal algebra. We explore how the computational complexity of a restricted constraint satisfaction problem is connected to properties of the corresponding algebra. For this, we introduce a notion of `tractable algebra' and study how the tractability of an algebra relates to the tractability of its smaller derived algebras, including its subalgebras and homomorphic images. This allows us to significantly reduce the types of algebras which need to be investigated. Using these results we exhibit a common structural property of all known intractable constraint satisfaction problems. Finally, we classify all finite strictly simple surjective algebras wit...
Reasoning with Concrete Domains
, 1999
"... Description logics are formalisms for the representation of and reasoning about conceptual knowledge on an abstract level. Concrete domains allow the integration of description logic reasoning with reasoning about concrete objects such as numbers, time intervals, or spatial regions. The importa ..."
Abstract

Cited by 64 (11 self)
 Add to MetaCart
Description logics are formalisms for the representation of and reasoning about conceptual knowledge on an abstract level. Concrete domains allow the integration of description logic reasoning with reasoning about concrete objects such as numbers, time intervals, or spatial regions. The importance of this combined approach, especially for building realworld applications, is widely accepted. However, the complexity of reasoning with concrete domains has never been formally analyzed and efficient algorithms have not been developed. This paper closes the gap by providing a tight bound for the complexity of reasoning with concrete domains and presenting optimal algorithms. 1 Introduction Description logics are knowledge representation and reasoning formalisms dealing with conceptual knowledge on an abstract logical level. However, for a variety of applications, it is essential to integrate the abstract knowledge with knowledge of a more concrete nature. Examples of such "co...
Tractable Disjunctions of Linear Constraints: Basic Results and Applications to Temporal Reasoning
 Theoretical Computer Science
, 1996
"... We study the problems of deciding consistency and performing variable elimination for disjunctions of linear inequalities and disequations with at most one inequality per disjunction. This new class of constraints extends the class of generalized linear constraints originally studied by Lassez an ..."
Abstract

Cited by 52 (3 self)
 Add to MetaCart
We study the problems of deciding consistency and performing variable elimination for disjunctions of linear inequalities and disequations with at most one inequality per disjunction. This new class of constraints extends the class of generalized linear constraints originally studied by Lassez and McAloon. We show that deciding consistency of a set of constraints in this class can be done in polynomial time. We also present a variable elimination algorithm which is similar to Fourier's algorithm for linear inequalities. Finally, we use these results to provide new temporal reasoning algorithms for the OrdHorn subclass of Allen's interval formalism. We also show that there is no low level of local consistency that can guarantee global consistency for the OrdHorn subclass. This property distinguishes the OrdHorn subclass from the pointizable subclass (for which strong 5consistency is sufficient to guarantee global consistency), and the continuous endpoint subclass (for whi...