Results 1  10
of
330
Online Learning with Kernels
, 2003
"... Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little u ..."
Abstract

Cited by 2558 (125 self)
 Add to MetaCart
(Show Context)
Kernel based algorithms such as support vector machines have achieved considerable success in various problems in the batch setting where all of the training data is available in advance. Support vector machines combine the socalled kernel trick with the large margin idea. There has been little use of these methods in an online setting suitable for realtime applications. In this paper we consider online learning in a Reproducing Kernel Hilbert Space. By considering classical stochastic gradient descent within a feature space, and the use of some straightforward tricks, we develop simple and computationally efficient algorithms for a wide range of problems such as classification, regression, and novelty detection. In addition to allowing the exploitation of the kernel trick in an online setting, we examine the value of large margins for classification in the online setting with a drifting target. We derive worst case loss bounds and moreover we show the convergence of the hypothesis to the minimiser of the regularised risk functional. We present some experimental results that support the theory as well as illustrating the power of the new algorithms for online novelty detection. In addition
A tutorial on support vector regression
, 2004
"... In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing ..."
Abstract

Cited by 714 (3 self)
 Add to MetaCart
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.
Learning to rank using gradient descent
 In ICML
, 2005
"... We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data f ..."
Abstract

Cited by 470 (16 self)
 Add to MetaCart
(Show Context)
We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine. 1.
Pegasos: Primal Estimated subgradient solver for SVM
"... We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a singl ..."
Abstract

Cited by 444 (18 self)
 Add to MetaCart
(Show Context)
We describe and analyze a simple and effective stochastic subgradient descent algorithm for solving the optimization problem cast by Support Vector Machines (SVM). We prove that the number of iterations required to obtain a solution of accuracy ɛ is Õ(1/ɛ), where each iteration operates on a single training example. In contrast, previous analyses of stochastic gradient descent methods for SVMs require Ω(1/ɛ2) iterations. As in previously devised SVM solvers, the number of iterations also scales linearly with 1/λ, where λ is the regularization parameter of SVM. For a linear kernel, the total runtime of our method is Õ(d/(λɛ)), where d is a bound on the number of nonzero features in each example. Since the runtime does not depend directly on the size of the training set, the resulting algorithm is especially suited for learning from large datasets. Our approach also extends to nonlinear kernels while working solely on the primal objective function, though in this case the runtime does depend linearly on the training set size. Our algorithm is particularly well suited for large text classification problems, where we demonstrate an orderofmagnitude speedup over previous SVM learning methods.
A Generalized Representer Theorem
 In Proceedings of the Annual Conference on Computational Learning Theory
, 2001
"... Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and ..."
Abstract

Cited by 185 (17 self)
 Add to MetaCart
(Show Context)
Wahba's classical representer theorem states that the solutions of certain risk minimization problems involving an empirical risk term and a quadratic regularizer can be written as expansions in terms of the training examples. We generalize the theorem to a larger class of regularizers and empirical risk terms, and give a selfcontained proof utilizing the feature space associated with a kernel. The result shows that a wide range of problems have optimal solutions that live in the finite dimensional span of the training examples mapped into feature space, thus enabling us to carry out kernel algorithms independent of the (potentially infinite) dimensionality of the feature space.
Support Vector Machines, Reproducing Kernel Hilbert Spaces and the Randomized GACV
, 1998
"... this paper we very briefly review some of these results. RKHS can be chosen tailored to the problem at hand in many ways, and we review a few of them, including radial basis function and smoothing spline ANOVA spaces. Girosi (1997), Smola and Scholkopf (1997), Scholkopf et al (1997) and others have ..."
Abstract

Cited by 171 (12 self)
 Add to MetaCart
this paper we very briefly review some of these results. RKHS can be chosen tailored to the problem at hand in many ways, and we review a few of them, including radial basis function and smoothing spline ANOVA spaces. Girosi (1997), Smola and Scholkopf (1997), Scholkopf et al (1997) and others have noted the relationship between SVM's and penalty methods as used in the statistical theory of nonparametric regression. In Section 1.2 we elaborate on this, and show how replacing the likelihood functional of the logit (log odds ratio) in penalized likelihood methods for Bernoulli [yesno] data, with certain other functionals of the logit (to be called SVM functionals) results in several of the SVM's that are of modern research interest. The SVM functionals we consider more closely resemble a "goodnessoffit" measured by classification error than a "goodnessoffit" measured by the comparative KullbackLiebler distance, which is frequently associated with likelihood functionals. This observation is not new or profound, but it is hoped that the discussion here will help to bridge the conceptual gap between classical nonparametric regression via penalized likelihood methods, and SVM's in RKHS. Furthermore, since SVM's can be expected to provide more compact representations of the desired classification boundaries than boundaries based on estimating the logit by penalized likelihood methods, they have potential as a prescreening or model selection tool in sifting through many variables or regions of attribute space to find influential quantities, even when the ultimate goal is not classification, but to understand how the logit varies as the important variables change throughout their range. This is potentially applicable to the variable/model selection problem in demographic m...
Sparse online gaussian processes
 Neural Computation
"... Minor corrections included a a The authors acknowledge reader feedbacks We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of ..."
Abstract

Cited by 159 (8 self)
 Add to MetaCart
(Show Context)
Minor corrections included a a The authors acknowledge reader feedbacks We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments. Sparse Online Gaussian Processes 2
Ridge Regression Learning Algorithm in Dual Variables
 In Proceedings of the 15th International Conference on Machine Learning
, 1998
"... In this paper we study a dual version of the Ridge Regression procedure. It allows us to perform nonlinear regression by constructing a linear regression function in a high dimensional feature space. The feature space representation can result in a large increase in the number of parameters used by ..."
Abstract

Cited by 145 (7 self)
 Add to MetaCart
(Show Context)
In this paper we study a dual version of the Ridge Regression procedure. It allows us to perform nonlinear regression by constructing a linear regression function in a high dimensional feature space. The feature space representation can result in a large increase in the number of parameters used by the algorithm. In order to combat this "curse of dimensionality", the algorithm allows the use of kernel functions, as used in Support Vector methods. We also discuss a powerful family of kernel functions which is constructed using the ANOVA decomposition method from the kernel corresponding to splines with an infinite number of nodes. This paper introduces a regression estimation algorithm which is a combination of these two elements: the dual version of Ridge Regression is applied to the ANOVA enhancement of the infinitenode splines. Experimental results are then presented (based on the Boston Housing data set) which indicate the performance of this algorithm relative to other algorithms....
Kernel partial least squares regression in reproducing kernel hilbert space
 Journal of Machine Learning Research
, 2001
"... A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the late ..."
Abstract

Cited by 134 (10 self)
 Add to MetaCart
A family of regularized least squares regression models in a Reproducing Kernel Hilbert Space is extended by the kernel partial least squares (PLS) regression model. Similar to principal components regression (PCR), PLS is a method based on the projection of input (explanatory) variables to the latent variables (components). However, in contrast to PCR, PLS creates the components by modeling the relationship between input and output variables while maintaining most of the information in the input variables. PLS is useful in situations where the number of explanatory variables exceeds the number of observations and/or a high level of multicollinearity among those variables is assumed. Motivated by this fact we will provide a kernel PLS algorithm for construction of nonlinear regression models in possibly highdimensional feature spaces. We give the theoretical description of the kernel PLS algorithm and we experimentally compare the algorithm with the existing kernel PCR and kernel ridge regression techniques. We will demonstrate that on the data sets employed kernel PLS achieves the same results as kernel PCR but uses significantly fewer, qualitatively different components. 1.
An introduction to boosting and leveraging
 Advanced Lectures on Machine Learning, LNCS
, 2003
"... ..."
(Show Context)