Results 1 
4 of
4
Distributive laws for the coinductive solution of recursive equations
 Information and Computation
"... This paper illustrates the relevance of distributive laws for the solution of recursive equations, and shows that one approach for obtaining coinductive solutions of equations via infinite terms is in fact a special case of a more general approach using an extended form of coinduction via distributi ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
This paper illustrates the relevance of distributive laws for the solution of recursive equations, and shows that one approach for obtaining coinductive solutions of equations via infinite terms is in fact a special case of a more general approach using an extended form of coinduction via distributive laws. 1
Quantum logic in dagger kernel categories
 Order
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract

Cited by 9 (9 self)
 Add to MetaCart
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical/ordertheoretic properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, orthomodularity, atomicity and completeness. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1
Quantum Logic in Dagger Categories with Kernels
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract
 Add to MetaCart
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1
Abstract Quantum Logic in Dagger Categories with Kernels
, 902
"... This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial inject ..."
Abstract
 Add to MetaCart
This paper investigates quantum logic from the perspective of categorical logic, and starts from minimal assumptions, namely the existence of involutions/daggers and kernels. The resulting structures turn out to (1) encompass many examples of interest, such as categories of relations, partial injections, Hilbert spaces (also modulo phase), and Boolean algebras, and (2) have interesting categorical/logical properties, in terms of kernel fibrations, such as existence of pullbacks, factorisation, and orthomodularity. For instance, the Sasaki hook and andthen connectives are obtained, as adjoints, via the existentialpullback adjunction between fibres. 1