Results 1 
2 of
2
The geometry of binary search trees
 In Proceedings of the 20th ACMSIAM Symposium on Discrete Algorithms (SODA 2009
, 2009
"... We present a novel connection between binary search trees (BSTs) and points in the plane satisfying a simple property. Using this correspondence, we achieve the following results: 1. A surprisingly clean restatement in geometric terms of many results and conjectures relating to BSTs and dynamic opti ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
We present a novel connection between binary search trees (BSTs) and points in the plane satisfying a simple property. Using this correspondence, we achieve the following results: 1. A surprisingly clean restatement in geometric terms of many results and conjectures relating to BSTs and dynamic optimality. 2. A new lower bound for searching in the BST model, which subsumes the previous two known bounds of Wilber [FOCS’86]. 3. The first proposal for dynamic optimality not based on splay trees. A natural greedy but offline algorithm was presented by Lucas [1988], and independently by Munro [2000], and was conjectured to be an (additive) approximation of the best binary search tree. We show that there exists an equalcost online algorithm, transforming the conjecture of Lucas and Munro into the conjecture that the greedy algorithm is dynamically optimal. 1
Adaptive Binary Search Trees
, 2009
"... A ubiquitous problem in the field of algorithms and data structures is that of searching for an element from an ordered universe. The simple yet powerful binary search tree (BST) model provides a rich family of solutions to this problem. Although BSTs require Ω(lg n) time per operation in the wors ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
A ubiquitous problem in the field of algorithms and data structures is that of searching for an element from an ordered universe. The simple yet powerful binary search tree (BST) model provides a rich family of solutions to this problem. Although BSTs require Ω(lg n) time per operation in the worst case, various adaptive BST algorithms are capable of exploiting patterns in the sequence of queries to achieve tighter, inputsensitive, bounds that can be o(lg n) in many cases. This thesis furthers our understanding of what is achievable in the BST model along two directions. First, we make progress in improving instancespecific lower bounds in the BST model. In particular, we introduce a framework for generating lower bounds on the cost that any BST algorithm must pay to execute a query sequence,