Results 1  10
of
13
On some inequalities for the gamma and psi functions
 MATH. COMP
, 1997
"... We present new inequalities for the gamma and psi functions, and we provide new classes of completely monotonic, starshaped, and superadditive functions which are related to Γ and ψ. Euler’s gamma function Γ(x) = ..."
Abstract

Cited by 38 (1 self)
 Add to MetaCart
We present new inequalities for the gamma and psi functions, and we provide new classes of completely monotonic, starshaped, and superadditive functions which are related to Γ and ψ. Euler’s gamma function Γ(x) =
The Incomplete Gamma Functions Since Tricomi
 In Tricomi's Ideas and Contemporary Applied Mathematics, Atti dei Convegni Lincei, n. 147, Accademia Nazionale dei Lincei
, 1998
"... The theory of the incomplete gamma functions, as part of the theory of conuent hypergeometric functions, has received its rst systematic exposition by Tricomi in the early 1950s. His own contributions, as well as further advances made thereafter, are surveyed here with particular emphasis on asy ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
The theory of the incomplete gamma functions, as part of the theory of conuent hypergeometric functions, has received its rst systematic exposition by Tricomi in the early 1950s. His own contributions, as well as further advances made thereafter, are surveyed here with particular emphasis on asymptotic expansions, zeros, inequalities, computational methods, and applications.
Some logarithmically completely monotonic functions involving gamma function
, 2005
"... Abstract. In this article, logarithmically complete monotonicity properties of some functions such as 1 [Γ(x+1)] 1/x ..."
Abstract

Cited by 10 (6 self)
 Add to MetaCart
Abstract. In this article, logarithmically complete monotonicity properties of some functions such as 1 [Γ(x+1)] 1/x
NECESSARY AND SUFFICIENT CONDITIONS FOR A FUNCTION INVOLVING DIVIDED DIFFERENCES OF THE DI AND TRIGAMMA FUNCTIONS TO BE COMPLETELY MONOTONIC
, 903
"... Abstract. In the present paper, necessary and sufficient conditions are established for a function involving divided differences of the digamma and trigamma functions to be completely monotonic. Consequently, necessary and sufficient conditions are derived for a function involving the ratio of two g ..."
Abstract

Cited by 7 (7 self)
 Add to MetaCart
Abstract. In the present paper, necessary and sufficient conditions are established for a function involving divided differences of the digamma and trigamma functions to be completely monotonic. Consequently, necessary and sufficient conditions are derived for a function involving the ratio of two gamma functions to be logarithmically completely monotonic, and some double inequalities are deduced for bounding divided differences of polygamma functions. 1.
Summations for Basic Hypergeometric Series Involving a QAnalogue of the Digamma Function
, 1996
"... Using a simple method, numerous summation formulas for hypergeometric and basic hypergeometric series are derived. Among these summation formulas are nonterminating extensions and qextensions of identities recorded by Lavoie, Luke, Watson, and Srivastava. At the result side of the basic hypergeomet ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Using a simple method, numerous summation formulas for hypergeometric and basic hypergeometric series are derived. Among these summation formulas are nonterminating extensions and qextensions of identities recorded by Lavoie, Luke, Watson, and Srivastava. At the result side of the basic hypergeometric summations there appears a qanalogue of the digamma function. Some of its properties are also studied. 1.
Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions, submitted
"... Abstract. In the survey paper, along one of main lines of bounding the ratio of two gamma functions, we look back and analyse some known results, including Wendel’s, Gurland’s, Kazarinoff’s, Gautschi’s, Watson’s, Chu’s, LazarevićLupa¸s’s, Kershaw’s and ElezovićGiordanoPečarić’s inequalities, clai ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
Abstract. In the survey paper, along one of main lines of bounding the ratio of two gamma functions, we look back and analyse some known results, including Wendel’s, Gurland’s, Kazarinoff’s, Gautschi’s, Watson’s, Chu’s, LazarevićLupa¸s’s, Kershaw’s and ElezovićGiordanoPečarić’s inequalities, claim, monotonic and convex properties. On the other hand, we introduce some related advances on the topic of bounding the ratio of two gamma functions in recent years. Contents
A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a powerexponential function, submitted
 CLASS OF COMPLETELY MONOTONIC FUNCTIONS AND APPLICATIONS 11
"... Abstract. In the article, a notion “logarithmically absolutely monotonic function” is introduced, an inclusion that a logarithmically absolutely monotonic function is also absolutely monotonic is revealed, the logarithmically complete monotonicity and the logarithmically absolute monotonicity of the ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
Abstract. In the article, a notion “logarithmically absolutely monotonic function” is introduced, an inclusion that a logarithmically absolutely monotonic function is also absolutely monotonic is revealed, the logarithmically complete monotonicity and the logarithmically absolute monotonicity of the function α x+β 1+ are proved, where α and β are given real parameters, a new proof x for the inclusion that a logarithmically completely monotonic function is also completely monotonic is given, and an open problem is posed.
Some monotonicity properties of gamma and qgamma functions, Available onlie at http://arxiv.org/abs/0709.1126v2
"... Abstract. We prove some properties of completely monotonic functions and apply them to obtain results on gamma and qgamma functions. 1. ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We prove some properties of completely monotonic functions and apply them to obtain results on gamma and qgamma functions. 1.
StieltjesPickBernsteinSchoenberg and their connection to complete monotonicity
, 2007
"... This paper is mainly a survey of published results. We recall the definition of positive definite and (conditionally) negative definite functions on abelian semigroups with involution, and we consider three main examples: Rk, [0, ∞ [ k, N0–the first with the inverse involution and the two others wit ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
This paper is mainly a survey of published results. We recall the definition of positive definite and (conditionally) negative definite functions on abelian semigroups with involution, and we consider three main examples: Rk, [0, ∞ [ k, N0–the first with the inverse involution and the two others with the identical involution. Schoenberg’s theorem explains the possibility of constructing rotation invariant positive definite and conditionally negative definite functions on euclidean spaces via completely monotonic functions and Bernstein functions. It is therefore important to be able to decide complete monotonicity of a given function. We combine complete monotonicity with complex analysis via the relation to Stieltjes functions and Pick functions and we give a survey of the many interesting relations between these classes of functions and completely monotonic functions, logarithmically completely monotonic functions and Bernstein functions. In Section 6 it is proved that log x − Ψ(x) and Ψ ′ (x) are logarithmically completely monotonic (where Ψ(x) = Γ ′ (x)/Γ(x)), and these results are new as far as we know. We end with a list of completely monotonic functions related to the Gamma function.
A COMPLETE SOLUTION TO AN OPEN PROBLEM RELATING TO AN INEQUALITY FOR RATIOS OF GAMMA FUNCTIONS
, 902
"... Abstract. In this paper, we prove that for x + y> 0 and y + 1> 0 the inequality [Γ(x + y + 1)/Γ(y + 1)] 1/x s x + y [Γ(x + y + 2)/Γ(y + 1)] 1/(x+1) x + y + 1 is valid if x> 1 and reversed if x < 1, where Γ(x) is the Euler gamma function. This completely extends the result in [Y. Yu, An inequality fo ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. In this paper, we prove that for x + y> 0 and y + 1> 0 the inequality [Γ(x + y + 1)/Γ(y + 1)] 1/x s x + y [Γ(x + y + 2)/Γ(y + 1)] 1/(x+1) x + y + 1 is valid if x> 1 and reversed if x < 1, where Γ(x) is the Euler gamma function. This completely extends the result in [Y. Yu, An inequality for ratios of gamma