Results 1 
6 of
6
COMBINING GEOMETRY AND COMBINATORICS: A UNIFIED APPROACH TO SPARSE SIGNAL RECOVERY
"... Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constru ..."
Abstract

Cited by 86 (12 self)
 Add to MetaCart
(Show Context)
Abstract. There are two main algorithmic approaches to sparse signal recovery: geometric and combinatorial. The geometric approach starts with a geometric constraint on the measurement matrix Φ and then uses linear programming to decode information about x from Φx. The combinatorial approach constructs Φ and a combinatorial decoding algorithm to match. We present a unified approach to these two classes of sparse signal recovery algorithms. The unifying elements are the adjacency matrices of highquality unbalanced expanders. We generalize the notion of Restricted Isometry Property (RIP), crucial to compressed sensing results for signal recovery, from the Euclidean norm to the ℓp norm for p ≈ 1, and then show that unbalanced expanders are essentially equivalent to RIPp matrices. From known deterministic constructions for such matrices, we obtain new deterministic measurement matrix constructions and algorithms for signal recovery which, compared to previous deterministic algorithms, are superior in either the number of measurements or in noise tolerance. 1.
Sparse recovery using sparse random matrices
, 2008
"... We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a highdimensional vector x from its lowerdimensional sketch Ax. A popular way of performing this recovery is by finding x # such that Ax = Ax # , and �x # �1 is minimal. It is known that this approach ..."
Abstract

Cited by 45 (4 self)
 Add to MetaCart
We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a highdimensional vector x from its lowerdimensional sketch Ax. A popular way of performing this recovery is by finding x # such that Ax = Ax # , and �x # �1 is minimal. It is known that this approach “works” if A is a random dense matrix, chosen from a proper distribution. In this paper, we investigate this procedure for the case where A is binary and very sparse. We show that, both in theory and in practice, sparse matrices are essentially as “good” as the dense ones. At the same time, sparse binary matrices provide additional benefits, such as reduced encoding and decoding time.
Explicit constructions for compressed sensing of sparse signals
 In Proceedings of the 19th Annual ACMSIAM Symposium on Discrete Algorithms
, 2008
"... Over the recent years, a new approach for obtaining a succinct approximate representation of ndimensional ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
(Show Context)
Over the recent years, a new approach for obtaining a succinct approximate representation of ndimensional
Sparse recovery using sparse matrices
, 2008
"... We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a highdimensional vector x from its lowerdimensional sketch Ax. A popular way of performing this recovery is by finding x # such that Ax = Ax # , and ‖x # ‖1 is minimal. It is known that this approach ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
(Show Context)
We consider the approximate sparse recovery problem, where the goal is to (approximately) recover a highdimensional vector x from its lowerdimensional sketch Ax. A popular way of performing this recovery is by finding x # such that Ax = Ax # , and ‖x # ‖1 is minimal. It is known that this approach “works ” if A is a random dense matrix, chosen from a proper distribution. In this paper, we investigate this procedure for the case where A is binary and very sparse. We show that, both in theory and in practice, sparse matrices are essentially as “good ” as the dense ones. At the same time, sparse binary matrices provide additional benefits, such as reduced encoding and decoding time. 1
Combining geometry and combinatorics: a unified approach to sparse signal
"... recovery ..."
(Show Context)
unknown title
, 804
"... On the reconstruction of blocksparse signals with an optimal number of measurements ..."
Abstract
 Add to MetaCart
On the reconstruction of blocksparse signals with an optimal number of measurements