Results 1  10
of
34
Algorithms for Constraint Satisfaction Problems: A Survey
 AI MAGAZINE
, 1992
"... A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic ..."
Abstract

Cited by 372 (0 self)
 Add to MetaCart
A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This paper presents a brief overview of many of these approaches in a tutorial fashion.
SemiringBased Constraint Satisfaction and Optimization
 JOURNAL OF THE ACM
, 1997
"... We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be asso ..."
Abstract

Cited by 159 (20 self)
 Add to MetaCart
We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated with each tuple of values of the variable domain, and the two semiring operations (1 and 3) model constraint projection and combination respectively. Local consistency algorithms, as usually used for classical CSPs, can be exploited in this general framework as well, provided that certain conditions on the semiring operations are satisfied. We then show how this framework can be used to model both old and new constraint solving and optimization schemes, thus allowing one to both formally justify many informally taken choices in existing schemes, and to prove that local consistency techniques can be used also in newly defined schemes.
Closure Properties of Constraints
 Journal of the ACM
, 1997
"... Many combinatorial search problems can be expressed as `constraint satisfaction problems', and this class of problems is known to be NPcomplete in general. In this paper we investigate the subclasses which arise from restricting the possible constraint types. We first show that any set of constrain ..."
Abstract

Cited by 139 (16 self)
 Add to MetaCart
Many combinatorial search problems can be expressed as `constraint satisfaction problems', and this class of problems is known to be NPcomplete in general. In this paper we investigate the subclasses which arise from restricting the possible constraint types. We first show that any set of constraints which does not give rise to an NPcomplete class of problems must satisfy a certain type of algebraic closure condition. We then investigate all the different possible forms of this algebraic closure property, and establish which of these are sufficient to ensure tractability. As examples, we show that all known classes of tractable constraints over finite domains can be characterised by such an algebraic closure property. Finally, we describe a simple computational procedure which can be used to determine the closure properties of a given set of constraints. This procedure involves solving a particular constraint satisfaction problem, which we call an `indicator problem'. Keywords: Cons...
Semiringbased CSPs and Valued CSPs: Frameworks, Properties, and Comparison
 Constraints
, 1999
"... In this paper we describe and compare two frameworks for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. One is based on a semiring, and the other one on a totally ordered commutative monoid. While comparing the two ..."
Abstract

Cited by 102 (27 self)
 Add to MetaCart
In this paper we describe and compare two frameworks for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. One is based on a semiring, and the other one on a totally ordered commutative monoid. While comparing the two approaches, we show how to pass from one to the other one, and we discuss when this is possible. The two frameworks have been independently introduced in [2], [3] and [35].
Constraint Solving over Semirings
 in IJCAI
, 1995
"... We introduce a general framework for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated to each tuple o ..."
Abstract

Cited by 98 (36 self)
 Add to MetaCart
We introduce a general framework for constraint solving where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated to each tuple of values of the variable domain, and the two semiring operations (+ and x) model constraint projection and combination respectively. Local consistency algorithms, as usually used for classical CSPs, can be exploited in this general framework as well, provided that some conditions on the semiring operations are satisfied. We then show how this framework can be used to model both old and new constraint solving schemes, thus allowing one both to formally justify many informally taken choices in existing schemes, and to prove that the local consistency techniques can be used also in newly defined schemes. 1
The Essence of Constraint Propagation
 CWI QUARTERLY VOLUME 11 (2&3) 1998, PP. 215 { 248
, 1998
"... We show that several constraint propagation algorithms (also called (local) consistency, consistency enforcing, Waltz, ltering or narrowing algorithms) are instances of algorithms that deal with chaotic iteration. To this end we propose a simple abstract framework that allows us to classify and comp ..."
Abstract

Cited by 89 (6 self)
 Add to MetaCart
We show that several constraint propagation algorithms (also called (local) consistency, consistency enforcing, Waltz, ltering or narrowing algorithms) are instances of algorithms that deal with chaotic iteration. To this end we propose a simple abstract framework that allows us to classify and compare these algorithms and to establish in a uniform way their basic properties.
On the Equivalence of Constraint Satisfaction Problems
 In Proceedings of the 9th European Conference on Artificial Intelligence
, 1990
"... A solution of a Constraint Satisfaction Problem (CSP) is an assignment of values to all its variables such that all its constraints are satisfied. Usually two CSPs are considered equivalent if they have the same solution set. We find this definition limiting, and develop a more general definition ba ..."
Abstract

Cited by 86 (0 self)
 Add to MetaCart
A solution of a Constraint Satisfaction Problem (CSP) is an assignment of values to all its variables such that all its constraints are satisfied. Usually two CSPs are considered equivalent if they have the same solution set. We find this definition limiting, and develop a more general definition based on the concept of mutual reducibility. In this extended scheme it is reasonable to consider a pair of CSPs equivalent even if they have different solutions. The basic idea behind the extended scheme is that two CSPs can be considered equivalent whenever they contain the same "amount of information", i.e. whenever it is possible to obtain the solution of one of them from the solution of the other one, and viceversa. In this way, both constraint and variable redundancy are allowed in CSPs belonging to the same equivalence class. As an example of the usefulness of this new notion of equivalence, we formally prove that binary and nonbinary CSPs are equivalent (in the new sense). Such a pro...
Characterising Tractable Constraints
 Artificial Intelligence
, 1994
"... Finding solutions to a binary constraint satisfaction problem is known to be an NPcomplete problem in general, but may be tractable in cases where either the set of allowed constraints or the graph structure is restricted. This paper considers restricted sets of contraints which are closed under pe ..."
Abstract

Cited by 58 (18 self)
 Add to MetaCart
Finding solutions to a binary constraint satisfaction problem is known to be an NPcomplete problem in general, but may be tractable in cases where either the set of allowed constraints or the graph structure is restricted. This paper considers restricted sets of contraints which are closed under permutation of the labels. We identify a set of constraints which gives rise to a class of tractable problems and give polynomial time algorithms for solving such problems, and for finding the equivalent minimal network. We also prove that the class of problems generated by any set of constraints not contained in this restricted set is NPcomplete. 1 Introduction Finding solutions to a constraint satisfaction problem is known to be an NPcomplete problem in general [11] even when the constraints are restricted to binary constraints. However, many of the problems which arise in practice have special properties which allow them to be solved efficiently. The question of identifying restrictions t...
Constraint propagation
 Handbook of Constraint Programming
, 2006
"... Constraint propagation is a form of inference, not search, and as such is more ”satisfying”, both technically and aesthetically. —E.C. Freuder, 2005. Constraint reasoning involves various types of techniques to tackle the inherent ..."
Abstract

Cited by 51 (3 self)
 Add to MetaCart
Constraint propagation is a form of inference, not search, and as such is more ”satisfying”, both technically and aesthetically. —E.C. Freuder, 2005. Constraint reasoning involves various types of techniques to tackle the inherent
Tractable Constraints on Ordered Domains
 Artificial Intelligence
, 1995
"... Finding solutions to a constraint satisfaction problem is known to be an NPcomplete problem in general, but may be tractable in cases where either the set of allowed constraints or the graph structure is restricted. In this paper we identify a restricted set of contraints which gives rise to a clas ..."
Abstract

Cited by 48 (15 self)
 Add to MetaCart
Finding solutions to a constraint satisfaction problem is known to be an NPcomplete problem in general, but may be tractable in cases where either the set of allowed constraints or the graph structure is restricted. In this paper we identify a restricted set of contraints which gives rise to a class of tractable problems. This class generalizes the notion of a Horn formula in propositional logic to larger domain sizes. We give a polynomial time algorithm for solving such problems, and prove that the class of problems generated by any larger set of constraints is NPcomplete. 1 Introduction Combinatorial problems abound in Artificial Intelligence. Examples include planning, temporal reasoning, linedrawing labelling and circuit design. The Constraint Satisfaction Problem (CSP) [14] is a generic combinatorial problem which is widely studied in the AI community because it allows all of these problems to be expressed in a natural and direct way. Reduction operations [12, 10] and intellig...