Results 1  10
of
46
A completeness theorem for Kleene algebras and the algebra of regular events
 Information and Computation
, 1994
"... We givea nitary axiomatization of the algebra of regular events involving only equations and equational implications. Unlike Salomaa's axiomatizations, the axiomatization given here is sound for all interpretations over Kleene algebras. 1 ..."
Abstract

Cited by 253 (28 self)
 Add to MetaCart
(Show Context)
We givea nitary axiomatization of the algebra of regular events involving only equations and equational implications. Unlike Salomaa's axiomatizations, the axiomatization given here is sound for all interpretations over Kleene algebras. 1
A menagerie of nonfinitely based process semantics over BPA*—from ready simulation to completed traces
 Mathematical Structures in Computer Science
, 1998
"... Fokkink and Zantema ((1994) Computer Journal 37:259–267) have shown that bisimulation equivalence has a finite equational axiomatization over the language of Basic Process Algebra with the binary Kleene star operation (BPA ∗). In the light of this positive result on the mathematical tractability of ..."
Abstract

Cited by 23 (18 self)
 Add to MetaCart
Fokkink and Zantema ((1994) Computer Journal 37:259–267) have shown that bisimulation equivalence has a finite equational axiomatization over the language of Basic Process Algebra with the binary Kleene star operation (BPA ∗). In the light of this positive result on the mathematical tractability of bisimulation equivalence over BPA ∗ , a natural question to ask is whether any other (pre)congruence relation in van Glabbeek’s linear time/branching time spectrum is finitely (in)equationally axiomatizable over it. In this paper, we prove that, unlike bisimulation equivalence, none of the preorders and equivalences in van Glabbeek’s linear time/branching time spectrum, whose discriminating power lies in between that of ready simulation and that of completed traces, has a finite equational axiomatization. This we achieve by exhibiting a family of (in)equivalences that holds in ready simulation semantics, the finest semantics that we consider, whose instances cannot all be proven by means of any finite set of (in)equations
Equational axioms for probabilistic bisimilarity
 IN PROCEEDINGS OF 9TH AMAST, LECTURE NOTES IN COMPUTER SCIENCE
, 2002
"... This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finitestate agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571595). The axiomatization is obtained by extending ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finitestate agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571595). The axiomatization is obtained by extending the general axioms of iteration theories (or iteration algebras), which characterize the equational properties of the fixed point operator on (#)continuous or monotonic functions, with three axiom schemas that express laws that are specific to probabilistic bisimilarity.
Rational Series over Dioids and Discrete Event Systems
 In Proc. of the 11th Conf. on Anal. and Opt. of Systems: Discrete Event Systems, number 199 in Lect. Notes. in Control and Inf. Sci, Sophia Antipolis
, 1994
"... this paper is obviously too short for such a program, we have chosen to propose an introductive guided tour. A more detailed exposition will be found in our references and in a more complete paper to appear elsewhere. 1 Rational Series in a Single Indeterminate ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
(Show Context)
this paper is obviously too short for such a program, we have chosen to propose an introductive guided tour. A more detailed exposition will be found in our references and in a more complete paper to appear elsewhere. 1 Rational Series in a Single Indeterminate
Bisimulation is not Finitely (First Order) Equationally Axiomatisable
 in Proceedings 9 th Annual Symposium on Logic in Computer Science
, 1994
"... This paper considers the existence of finite equational axiomatisations of bisimulation over a calculus of finite state processes. To express even simple properties such as ¯XE = ¯XE[E=X] equationally it is necessary to use some notation for substitutions. Accordingly the calculus is embedded in a s ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
(Show Context)
This paper considers the existence of finite equational axiomatisations of bisimulation over a calculus of finite state processes. To express even simple properties such as ¯XE = ¯XE[E=X] equationally it is necessary to use some notation for substitutions. Accordingly the calculus is embedded in a simply typed lambda calculus, allowing axioms such as the above to be written as equations of higher type rather than as equation schemes. Notions of higher order transition system and bisimulation are then defined and using them the nonexistence of finite axiomatisations containing at most first order variables is shown. The same technique is then applied to calculi of star expressions containing a zero process  in contrast to the positive result given in [FZ93] for BPA ? , which differs only in that it does not contain a zero. 1 Introduction In this paper we consider the existence of finite equational axiomatisations for bisimulation over finite state processes. Such questions of axio...
An Efficient Coq Tactic for Deciding Kleene Algebras
, 2009
"... We present a reflexive tactic for deciding the equational theory of Kleene algebras in the Coq proof assistant. This tactic relies on a careful implementation of efficient finite automata algorithms, so that it solves casual equations almost instantaneously. The corresponding decision procedure was ..."
Abstract

Cited by 17 (5 self)
 Add to MetaCart
(Show Context)
We present a reflexive tactic for deciding the equational theory of Kleene algebras in the Coq proof assistant. This tactic relies on a careful implementation of efficient finite automata algorithms, so that it solves casual equations almost instantaneously. The corresponding decision procedure was proved correct and complete; correctness is established w.r.t. any model (including binary relations), by formalising Kozen’s initiality theorem.
On Action Algebras
, 1993
"... Action algebras have been proposed by Pratt [22] as an alternative to Kleene algebras [8, 9]. Their chief advantage over Kleene algebras is that they form a finitelybased equational variety, so the essential properties of (iteration) are captured purely equationally. However, unlike Kleene algebras ..."
Abstract

Cited by 15 (1 self)
 Add to MetaCart
(Show Context)
Action algebras have been proposed by Pratt [22] as an alternative to Kleene algebras [8, 9]. Their chief advantage over Kleene algebras is that they form a finitelybased equational variety, so the essential properties of (iteration) are captured purely equationally. However, unlike Kleene algebras, they are not closed under the formation of matrices, which renders them inapplicable in certain constructions in automata theory and the design and analysis of algorithms. In this paper we consider a class of action algebras called action lattices. An action lattice is simply an action algebra that forms a lattice under its natural order. Action lattices combine the best features of Kleene algebras and action algebras: like action algebras, they form a finitelybased equational variety; like Kleene algebras, they are closed under the formation of matrices. Moreover, they form the largest subvariety of action algebras for which this is true. All common examples of Kleene algebras appearing in automata theory, logics of programs, relational algebra, and the design and analysis of algorithms are action lattices.
Process Algebra with Recursive Operations
"... ing from just the two atomic actions in I def = fthrow; tailg, FIR b 1 yields I ((throw tail) throw head) = head: First, observe I (throw tail) = . Then, using (4), it easily follows that I ((throw tail) throw head) = head: This expresses that head eventually comes up, and thus ex ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
ing from just the two atomic actions in I def = fthrow; tailg, FIR b 1 yields I ((throw tail) throw head) = head: First, observe I (throw tail) = . Then, using (4), it easily follows that I ((throw tail) throw head) = head: This expresses that head eventually comes up, and thus excludes the infinite sequence of steps present in I ((throw tail) throw head). 7.2 Empty Process Let the symbol " denote the empty process, introduced as a unit for sequential composition by Koymans and Vrancken in [58] (see also [28, 74]). Obvious as " may be (being a unit for \Delta), its introduction is nontrivial because at the same time it must be a unit for k as well. In the design of BPA, PA, ACP and related axiom systems, it has proved useful to study versions of the theory, both with and without ". Just for this reason the star operation with its (original) defining equation as given by Kleene in [54] was introduced in process algebra. Taking y = " in x y, one obtains x ...
A tactic for deciding Kleene algebras
 In 1st Coq Workshop. Tech. Univ
, 2009
"... We present a Coq reflexive tactic for deciding equalities or inequalities in Kleene algebras. This tactic is part of a larger project, whose aim is to provide tools for reasoning about binary relations in Coq: binary relations form a Kleene algebra, where the star operation is the reflexive transiti ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
(Show Context)
We present a Coq reflexive tactic for deciding equalities or inequalities in Kleene algebras. This tactic is part of a larger project, whose aim is to provide tools for reasoning about binary relations in Coq: binary relations form a Kleene algebra, where the star operation is the reflexive transitive closure. Our tactic relies on an initiality theorem, whose proof goes by replaying finite automata algorithms in an algebraic way, using matrices.
On the Burnside problem for Semigroups of Matrices in the (max,+) Algebra
, 1996
"... We show that the answer to the Burnside problem is positive for semigroups of matrices with entries in the (max,+)algebra (that is, the semiring (R[ f�1g; max; +)), and also for semigroups of (max,+)linear projective maps with rational entries. An application to the estimation of the Lyapunov expo ..."
Abstract

Cited by 14 (2 self)
 Add to MetaCart
We show that the answer to the Burnside problem is positive for semigroups of matrices with entries in the (max,+)algebra (that is, the semiring (R[ f�1g; max; +)), and also for semigroups of (max,+)linear projective maps with rational entries. An application to the estimation of the Lyapunov exponent of certain products of random matrices is also discussed.