Results 1 
2 of
2
Complete Axioms for Categorical Fixedpoint Operators
 In Proceedings of 15th Annual Symposium on Logic in Computer Science
, 2000
"... We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the fre ..."
Abstract

Cited by 29 (6 self)
 Add to MetaCart
We give an axiomatic treatment of fixedpoint operators in categories. A notion of iteration operator is defined, embodying the equational properties of iteration theories. We prove a general completeness theorem for iteration operators, relying on a new, purely syntactic characterisation of the free iteration theory. We then show how iteration operators arise in axiomatic domain theory. One result derives them from the existence of sufficiently many bifree algebras (exploiting the universal property Freyd introduced in his notion of algebraic compactness) . Another result shows that, in the presence of a parameterized natural numbers object and an equational lifting monad, any uniform fixedpoint operator is necessarily an iteration operator. 1. Introduction Fixed points play a central role in domain theory. Traditionally, one works with a category such as Cppo, the category of !continuous functions between !complete pointed partial orders. This possesses a leastfixedpoint oper...
Equational axioms for probabilistic bisimilarity
 IN PROCEEDINGS OF 9TH AMAST, LECTURE NOTES IN COMPUTER SCIENCE
, 2002
"... This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finitestate agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571595). The axiomatization is obtained by extending ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
This paper gives an equational axiomatization of probabilistic bisimulation equivalence for a class of finitestate agents previously studied by Stark and Smolka ((2000) Proof, Language, and Interaction: Essays in Honour of Robin Milner, pp. 571595). The axiomatization is obtained by extending the general axioms of iteration theories (or iteration algebras), which characterize the equational properties of the fixed point operator on (#)continuous or monotonic functions, with three axiom schemas that express laws that are specific to probabilistic bisimilarity.