Results 1  10
of
18
Maximum Planar Subgraphs and Nice Embeddings: Practical Layout Tools
 ALGORITHMICA
, 1996
"... ..."
Planarizing Graphs  A Survey and Annotated Bibliography
, 1999
"... Given a finite, undirected, simple graph G, we are concerned with operations on G that transform it into a planar graph. We give a survey of results about such operations and related graph parameters. While there are many algorithmic results about planarization through edge deletion, the results abo ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
Given a finite, undirected, simple graph G, we are concerned with operations on G that transform it into a planar graph. We give a survey of results about such operations and related graph parameters. While there are many algorithmic results about planarization through edge deletion, the results about vertex splitting, thickness, and crossing number are mostly of a structural nature. We also include a brief section on vertex deletion. We do not consider parallel algorithms, nor do we deal with online algorithms.
The Thickness of Graphs: A Survey
 Graphs Combin
, 1998
"... We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a ba ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
(Show Context)
We give a stateoftheart survey of the thickness of a graph from both a theoretical and a practical point of view. After summarizing the relevant results concerning this topological invariant of a graph, we deal with practical computation of the thickness. We present some modifications of a basic heuristic and investigate their usefulness for evaluating the thickness and determining a decomposition of a graph in planar subgraphs. Key words: Thickness, maximum planar subgraph, branch and cut 1 Introduction In VLSI circuit design, a chip is represented as a hypergraph consisting of nodes corresponding to macrocells and of hyperedges corresponding to the nets connecting the cells. A chipdesigner has to place the macrocells on a printed circuit board (which usually consists of superimposed layers), according to several designing rules. One of these requirements is to avoid crossings, since crossings lead to undesirable signals. It is therefore desirable to find ways to handle wi...
Solving the Maximum Weight Planar Subgraph Problem by Branch and Cut
 PROCEEDINGS OF THE THIRD CONFERENCE ON INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION
, 1993
"... In this paper we investigate the problem of identifying a planar subgraph of maximum weight of a given edge weighted graph. In the theoretical part of the paper, the polytope of all planar subgraphs of a graph G is defined and studied. All subgraphs of a graph G, which are subdivisions of K 5 or K 3 ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
In this paper we investigate the problem of identifying a planar subgraph of maximum weight of a given edge weighted graph. In the theoretical part of the paper, the polytope of all planar subgraphs of a graph G is defined and studied. All subgraphs of a graph G, which are subdivisions of K 5 or K 3;3 , turn out to define facets of this polytope. We also present computational experience with a branch and cut algorithm for the above problem. Our approach is based on an algorithm which searches for forbidden substructures in a graph that contains a subdivision of K 5 or K 3;3 . These structures give us inequalities which are used as cutting planes.
Planarization of Graphs Embedded on Surfaces
 in WG
, 1995
"... A planarizing set of a graph is a set of edges or vertices whose removal leaves a planar graph. It is shown that, if G is an nvertex graph of maximum degree d and orientable genus g, then there exists a planarizing set of O( p dgn) edges. This result is tight within a constant factor. Similar res ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
(Show Context)
A planarizing set of a graph is a set of edges or vertices whose removal leaves a planar graph. It is shown that, if G is an nvertex graph of maximum degree d and orientable genus g, then there exists a planarizing set of O( p dgn) edges. This result is tight within a constant factor. Similar results are obtained for planarizing vertex sets and for graphs embedded on nonorientable surfaces. Planarizing edge and vertex sets can be found in O(n + g) time, if an embedding of G on a surface of genus g is given. We also construct an approximation algorithm that finds an O( p gn log g) planarizing vertex set of G in O(n log g) time if no genusg embedding is given as an input. 1 Introduction A graph G is planar if G can be drawn in the plane so that no two edges intersect. Planar graphs arise naturally in many applications of graph theory, e.g. in VLSI and circuit design, in network design and analysis, in computer graphics, and is one of the most intensively studied class of graphs [2...
A Note on Computing a Maximal Planar Subgraph using PQTrees
, 1998
"... The problem of computing a maximal planar subgraph of a non planar graph has been deeply investigated over the last 20 years. Several attempts have been tried to solve the problem with the help of PQtrees. The latest attempt has been reported by Jayakumar et al. [10]. In this paper we show that ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
The problem of computing a maximal planar subgraph of a non planar graph has been deeply investigated over the last 20 years. Several attempts have been tried to solve the problem with the help of PQtrees. The latest attempt has been reported by Jayakumar et al. [10]. In this paper we show that the algorithm presented by Jayakumar et al. is not correct. We show that it does not necessarily compute a maximal planar subgraph and we note that the same holds for a modified version of the algorithm presented by Kant [12]. Our conclusions most likely suggest not to use PQtrees at all for this specific problem.
Algorithm 797: Fortran Subroutines for Approximate Solution Of . . .
 ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE
, 1999
"... ..."
On Computing a Maximal Planar Subgraph using PQTrees
, 1996
"... The problem of computing a maximal planar subgraph of a nonplanar graph has been deeply investigated over the last 20 years. Several attempts have been tried to solve the problem with the help of PQtrees. The latest attempt has been reported by Jayakumar et al. (1989). In this paper we show that t ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
The problem of computing a maximal planar subgraph of a nonplanar graph has been deeply investigated over the last 20 years. Several attempts have been tried to solve the problem with the help of PQtrees. The latest attempt has been reported by Jayakumar et al. (1989). In this paper we show that the algorithm presented by Jayakumar et al. is not correct. We show that it does not necessarily compute a maximal planar subgraph and that the same holds for a modified version of the algorithm presented by Kant (1992). Our conclusions most likely suggest not to use PQtrees at all for this specific problem.
An Analysis of Some Heuristics for the Maximum Planar Subgraph Problem
 Proc. 6 th Annual ACMSIAM Symp. on Discrete Algorithms
, 1995
"... Introduction The problem of extracting a maximum planar subgraph from a nonplanar graph, referred to as graph planarization, has important applications in circuit layout, facility layout, and automated graphical display systems [F, TDB]. The problem is NPhard [LG]; hence, research has focused on h ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
(Show Context)
Introduction The problem of extracting a maximum planar subgraph from a nonplanar graph, referred to as graph planarization, has important applications in circuit layout, facility layout, and automated graphical display systems [F, TDB]. The problem is NPhard [LG]; hence, research has focused on heuristics. There are several algorithms for finding maximal planar subgraphs [CHT, CNS, GT, JTS, JM, K, OT]. However, there are graphs (see [CC]) for which the size ratio between two maximal planar subgraphs can be as small as 1=3. Hence, unless some precautions are taken to avoid the extraction of small subgraphs, these heuristics have the potential for poor behavior. In this paper, we analyze the worstcase performance of some heuristics and show that there are graphs which can cause each of them to achieve the 1=3 bound. However, a theoretical analysis of an algorithm's performance is often too pessimistic and somew