Results 1  10
of
15
A NewtonCG augmented Lagrangian method for semidefinite programming
 SIAM J. Optim
"... Abstract. We consider a NewtonCG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresp ..."
Abstract

Cited by 32 (7 self)
 Add to MetaCart
Abstract. We consider a NewtonCG augmented Lagrangian method for solving semidefinite programming (SDP) problems from the perspective of approximate semismooth Newton methods. In order to analyze the rate of convergence of our proposed method, we characterize the Lipschitz continuity of the corresponding solution mapping at the origin. For the inner problems, we show that the positive definiteness of the generalized Hessian of the objective function in these inner problems, a key property for ensuring the efficiency of using an inexact semismooth NewtonCG method to solve the inner problems, is equivalent to the constraint nondegeneracy of the corresponding dual problems. Numerical experiments on a variety of large scale SDPs with the matrix dimension n up to 4, 110 and the number of equality constraints m up to 2, 156, 544 show that the proposed method is very efficient. We are also able to solve the SDP problem fap36 (with n = 4, 110 and m = 1, 154, 467) in the Seventh DIMACS Implementation Challenge much more accurately than previous attempts.
Global minimization using an Augmented Lagrangian method with variable lowerlevel constraints
, 2007
"... A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global c ..."
Abstract

Cited by 21 (1 self)
 Add to MetaCart
A novel global optimization method based on an Augmented Lagrangian framework is introduced for continuous constrained nonlinear optimization problems. At each outer iteration k the method requires the εkglobal minimization of the Augmented Lagrangian with simple constraints, where εk → ε. Global convergence to an εglobal minimizer of the original problem is proved. The subproblems are solved using the αBB method. Numerical experiments are presented.
Correlation stress testing for valueatrisk: an unconstrained convex optimization approach
, 2010
"... ..."
An augmented Lagrangian dual approach for the Hweighted nearest correlation matrix problem
, 2010
"... ..."
LOCAL CONVERGENCE OF EXACT AND INEXACT AUGMENTED LAGRANGIAN METHODS UNDER THE SECONDORDER SUFFICIENT OPTIMALITY CONDITION
, 2012
"... We establish local convergence and rate of convergence of the classical augmented Lagrangian algorithm under the sole assumption that the dual starting point is close to a multiplier satisfying the secondorder sufficient optimality condition. In particular, no constraint qualifications of any kind ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
We establish local convergence and rate of convergence of the classical augmented Lagrangian algorithm under the sole assumption that the dual starting point is close to a multiplier satisfying the secondorder sufficient optimality condition. In particular, no constraint qualifications of any kind are needed. Previous literature on the subject required, in addition, the linear independence constraint qualification and either the strict complementarity assumption or a stronger version of the secondorder sufficient condition. That said, the classical results allow the initial multiplier estimate to be far from the optimal one, at the expense of proportionally increasing the threshold value for the penalty parameters. Although our primary goal is to avoid constraint qualifications, if the stronger assumptions are introduced, then starting points far from the optimal multiplier are allowed within our analysis as well. Using only the secondorder sufficient optimality condition, for penalty parameters large enough we prove primaldual Qlinear convergence rate, which becomes superlinear if the parameters are allowed to go to infinity. Both exact and inexact solutions of subproblems are considered. In the exact case, we further show that the primal convergence rate is of the same Qorder as the primaldual rate. Previous assertions for the primal sequence all had to do with the weaker Rrate of convergence and required the stronger assumptions cited above. Finally, we show that under our assumptions one of the popular rules of controlling the penalty parameters ensures their boundedness.
Global Nonlinear Programming with possible infeasibility and finite termination
, 2012
"... In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In th ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
In a recent paper, Birgin, Floudas and Martínez introduced an augmented Lagrangian method for global optimization. In their approach, augmented Lagrangian subproblems are solved using the αBB method and convergence to global minimizers was obtained assuming feasibility of the original problem. In the present research, the algorithm mentioned above will be improved in several crucial aspects. On the one hand, feasibility of the problem will not be required. Possible infeasibility will be detected in finite time by the new algorithms and optimal infeasibility results will be proved. On the other hand, finite termination results thatguaranteeoptimalityand/orfeasibilityuptoanyrequiredprecisionwillbeprovided. An adaptive modification in which subproblem tolerances depend on current feasibility and complementarity will also be given. The adaptive algorithm allows the augmented Lagrangian subproblems to be solved without requiring unnecessary potentially high precisions in the intermediate steps of the method, which improves the overall efficiency. Experiments showing how the new algorithms and results are related to practical computations will be given.
Convergence Analysis of the Augmented Lagrangian Method for Nonlinear SecondOrder Cone Optimization Problems
, 2006
"... The paper focuses on the convergence rate of the augmented Lagrangian method for nonlinear secondorder cone optimization problems. Under a set of assumptions of sufficient conditions, including the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The paper focuses on the convergence rate of the augmented Lagrangian method for nonlinear secondorder cone optimization problems. Under a set of assumptions of sufficient conditions, including the componentwise strict complementarity condition, the constraint nondegeneracy condition and the second order sufficient condition, we first study some properties of the augmented Lagrangian and then show that the rate of local convergence of the augmented Lagrangian method is proportional to 1/τ, where the penalty parameter τ is not less than a threshold ˆτ> 0.
via Polynomial Semidefinite Programming
, 2007
"... scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the ..."
Abstract
 Add to MetaCart
scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author’s copyright. These works may not be reposted without the explicit permission of the copyright holder. Eigenvalue Optimization of Structures
Erice’2007 Defeng Sun 1 The Role of Metric Projectors in Nonlinear Conic Optimization
, 2007
"... Let us consider the matrix correlation problem min 1 2 ‖ X − G ‖2 F s.t. Xii = 1, i = 1,..., n, X ∈ S n +, where G ∈ S n is given, but may not be positive semidefinite. This is a special problem in stress testing in finance. ..."
Abstract
 Add to MetaCart
Let us consider the matrix correlation problem min 1 2 ‖ X − G ‖2 F s.t. Xii = 1, i = 1,..., n, X ∈ S n +, where G ∈ S n is given, but may not be positive semidefinite. This is a special problem in stress testing in finance.