Results 1 
2 of
2
Fast Bounds on the Distribution of Smooth Numbers
, 2006
"... Let P(n) denote the largest prime divisor of n, andlet Ψ(x,y) be the number of integers n ≤ x with P(n) ≤ y. Inthispaper we present improvements to Bernstein’s algorithm, which finds rigorous upper and lower bounds for Ψ(x,y). Bernstein’s original algorithm runs in time roughly linear in y. Our fi ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
Let P(n) denote the largest prime divisor of n, andlet Ψ(x,y) be the number of integers n ≤ x with P(n) ≤ y. Inthispaper we present improvements to Bernstein’s algorithm, which finds rigorous upper and lower bounds for Ψ(x,y). Bernstein’s original algorithm runs in time roughly linear in y. Our first, easy improvement runs in time roughly y 2/3. Then, assuming the Riemann Hypothesis, we show how to drastically improve this. In particular, if log y is a fractional power of log x, which is true in applications to factoring and cryptography, then our new algorithm has a running time that is polynomial in log y, and gives bounds as tight as, and often tighter than, Bernstein’s algorithm.
Divisibility, Smoothness and Cryptographic Applications
, 2008
"... This paper deals with products of moderatesize primes, familiarly known as smooth numbers. Smooth numbers play an crucial role in information theory, signal processing and cryptography. We present various properties of smooth numbers relating to their enumeration, distribution and occurrence in var ..."
Abstract
 Add to MetaCart
This paper deals with products of moderatesize primes, familiarly known as smooth numbers. Smooth numbers play an crucial role in information theory, signal processing and cryptography. We present various properties of smooth numbers relating to their enumeration, distribution and occurrence in various integer sequences. We then turn our attention to cryptographic applications in which smooth numbers play a pivotal role. 1 1