Results 1 
4 of
4
Algebra of logic programming
 International Conference on Logic Programming
, 1999
"... At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating th ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
At present, the field of declarative programming is split into two main areas based on different formalisms; namely, functional programming, which is based on lambda calculus, and logic programming, which is based on firstorder logic. There are currently several language proposals for integrating the expressiveness of these two models of computation. In this thesis we work towards an integration of the methodology from the two research areas. To this end, we propose an algebraic approach to reasoning about logic programs, corresponding to the approach taken in functional programming. In the first half of the thesis we develop and discuss a framework which forms the basis for our algebraic analysis and transformation methods. The framework is based on an embedding of definite logic programs into lazy functional programs in Haskell, such that both the declarative and the operational semantics of the logic programs are preserved. In spite of its conciseness and apparent simplicity, the embedding proves to have many interesting properties and it gives rise to an algebraic semantics of logic programming. It also allows us to reason about logic programs in a simple calculational style, using rewriting and the algebraic laws of combinators. In the embedding, the meaning of a logic program arises compositionally from the meaning of its constituent subprograms and the combinators that connect them. In the second half of the thesis we explore applications of the embedding to the algebraic transformation of logic programs. A series of examples covers simple program derivations, where our techniques simplify some of the current techniques. Another set of examples explores applications of the more advanced program development techniques from the Algebra of Programming by Bird and de Moor [18], where we expand the techniques currently available for logic program derivation and optimisation. To my parents, Sandor and Erzsebet. And the end of all our exploring Will be to arrive where we started And know the place for the first time.
Compositional Logic Programming
 In Proceedings of the JICSLP'96 postconference workshop: Multiparadigm logic programming, Report 9628. Technische Universitat
, 2000
"... Relational program derivation has gathered momentum over the last decade with the development of many specification logics. However, before such relational specifications can be executed in existing programming languages, they must be carefully phrased to respect the evaluation order of the langu ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
Relational program derivation has gathered momentum over the last decade with the development of many specification logics. However, before such relational specifications can be executed in existing programming languages, they must be carefully phrased to respect the evaluation order of the language. In turn, this requirement inhibits the rapid prototyping of specifications in a relational notation. The aim of this thesis is to bridge the gap between the methodology and practice of relational program derivation by realising a compositional style of logic programming that permits specifications to be phrased naturally and executed declaratively.
Implicit program synthesis by a reversible metainterpreter
 Proc. of LOPSTR’97, volume 1463 of LNCS
, 1998
"... Abstract. Synthesis of logic programs is considered as a special instance of logic programming. We describe experience made within a logical metaprogramming environment whose central component is a reversible metainterpreter, in the sense that it is equally well suited for generating object programs ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Abstract. Synthesis of logic programs is considered as a special instance of logic programming. We describe experience made within a logical metaprogramming environment whose central component is a reversible metainterpreter, in the sense that it is equally well suited for generating object programs as well as for executing them. Requirements telling that certain goals should be provable in a program sought can be integrated with additional sideconditions expressed by the developer at the metalevel, and the resulting specifications tend to be quite concise and declarative. For problems up to a certain degree of complexity, this provides a mode of working characterized by experimentation and an ability to combine different methods which is uncommon in most other systems for program synthesis. Reversibility in the metainterpreter is obtained using constraint logic techniques. 1