Results 1  10
of
15
New Dynamic Algorithms for Shortest Path Tree Computation
 IEEE/ACM Transactions on Networking
, 2000
"... The OSPF and ISIS routing protocols widely used in today's Internet compute a shortest path tree (SPT) from each router to other routers in a routing area. Many existing commercial routers recompute an SPT from scratch following changes in the link states of the network. Such recomputation of ..."
Abstract

Cited by 75 (1 self)
 Add to MetaCart
The OSPF and ISIS routing protocols widely used in today's Internet compute a shortest path tree (SPT) from each router to other routers in a routing area. Many existing commercial routers recompute an SPT from scratch following changes in the link states of the network. Such recomputation of an entire SPT is inecient and may consume a considerable amount of CPU time. Moreover, as there may coexist multiple SPTs in a network with a set of given link states, recomputation from scratch causes frequent unnecessary changes in the topology of an existing SPT and may lead to routing instability. In this paper, we present new dynamic SPT algorithms that make use of the structure of the previously computed SPT. Besides efficiency, our algorithm design objective is to achieve routing stability by making minimum changes to the topology of an existing SPT (while maintaining shortest path property) when some link states in the network have changed. We establish an algorithmic framework that allows ...
Lifelong Planning A*
, 2005
"... Heuristic search methods promise to find shortest paths for pathplanning problems faster than uninformed search methods. Incremental search methods, on the other hand, promise to find shortest paths for series of similar pathplanning problems faster than is possible by solving each pathplanning p ..."
Abstract

Cited by 57 (3 self)
 Add to MetaCart
Heuristic search methods promise to find shortest paths for pathplanning problems faster than uninformed search methods. Incremental search methods, on the other hand, promise to find shortest paths for series of similar pathplanning problems faster than is possible by solving each pathplanning problem from scratch. In this article, we develop Lifelong Planning A * (LPA*), an incremental version of A * that combines ideas from the artificial intelligence and the algorithms literature. It repeatedly finds shortest paths from a given start vertex to a given goal vertex while the edge costs of a graph change or vertices are added or deleted. Its first search is the same as that of a version of A * that breaks ties in favor of vertices with smaller gvalues but many of the subsequent searches are potentially faster because it reuses those parts of the previous search tree that are identical to the new one. We present analytical results that demonstrate its similarity to A * and experimental results that demonstrate its potential advantage in two different domains if the pathplanning problems change only slightly and the changes are close to the goal.
Fast replanning for navigation in unknown terrain
 Transactions on Robotics
"... Abstract—Mobile robots often operate in domains that are only incompletely known, for example, when they have to move from given start coordinates to given goal coordinates in unknown terrain. In this case, they need to be able to replan quickly as their knowledge of the terrain changes. Stentz ’ Fo ..."
Abstract

Cited by 52 (10 self)
 Add to MetaCart
Abstract—Mobile robots often operate in domains that are only incompletely known, for example, when they have to move from given start coordinates to given goal coordinates in unknown terrain. In this case, they need to be able to replan quickly as their knowledge of the terrain changes. Stentz ’ Focussed Dynamic A (D) is a heuristic search method that repeatedly determines a shortest path from the current robot coordinates to the goal coordinates while the robot moves along the path. It is able to replan faster than planning from scratch since it modifies its previous search results locally. Consequently, it has been extensively used in mobile robotics. In this article, we introduce an alternative to D that determines the same paths and thus moves the robot in the same way but is algorithmically different. D Lite is simple, can be rigorously analyzed, extendible in multiple ways, and is at least as efficient as D. We believe that our results will make Dlike replanning methods even more popular and enable robotics researchers to adapt them to additional applications. Index Terms—A, D (Dynamic A), navigation in unknown terrain, planning with the freespace assumption, replanning, search, sensorbased path planning. I.
Shortest Paths in Digraphs of Small Treewidth. Part I: Sequential Algorithms
, 1995
"... We consider the problem of preprocessing an nvertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give algorithms that depend on the treewidth of the input graph. When the treewidth is a consta ..."
Abstract

Cited by 39 (4 self)
 Add to MetaCart
We consider the problem of preprocessing an nvertex digraph with real edge weights so that subsequent queries for the shortest path or distance between any two vertices can be efficiently answered. We give algorithms that depend on the treewidth of the input graph. When the treewidth is a constant, our algorithms can answer distance queries in O(ff(n)) time after O(n) preprocessing. This improves upon previously known results for the same problem. We also give a dynamic algorithm which, after a change in an edge weight, updates the data structure in time O(n fi ), for any constant 0 ! fi ! 1. Furthermore, an algorithm of independent interest is given: computing a shortest path tree, or finding a negative cycle in linear time.
New Dynamic SPT Algorithm based on a BallandString Model
, 1999
"... A key functionality in today's widely used interior gateway routing protocols such as OSPF and ISIS involves the computation of a shortest path tree (SPT). In many existing commercial routers, the computation of an SPT is done from scratch following changes in the link states of the network. A ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
A key functionality in today's widely used interior gateway routing protocols such as OSPF and ISIS involves the computation of a shortest path tree (SPT). In many existing commercial routers, the computation of an SPT is done from scratch following changes in the link states of the network. As there may coexist multiple SPTs in a network with a set of given link states, such recomputation of an entire SPT not only is inefficient but also causes frequent unnecessary changes in the topology of an existing SPT and creates routing instability. This paper presents a new dynamic SPT algorithm that makes use of the structure of the previously computed SPT. Our algorithm is derived by recasting the SPT problem into an optimization problem in a dual linear programming framework, which can also be interpreted using a ballandstring model. In this model, the increase (or decrease) of an edge weight in the tree corresponds to the lengthening (or shortening) of a string. By stretching the strings...
Experimental Analysis of Dynamic Algorithms for the Single Source Shortest Path Problem
 ACM Jounal of Experimental Algorithmics
, 1997
"... In this paper we propose the first experimental study of the fully dynamic single source shortest paths problem on directed graphs with positive real edge weights. In particular, we perform an experimental analysis of three different algorithms: Dijkstra's algorithm, and the two output bound ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
In this paper we propose the first experimental study of the fully dynamic single source shortest paths problem on directed graphs with positive real edge weights. In particular, we perform an experimental analysis of three different algorithms: Dijkstra's algorithm, and the two output bounded algorithms proposed by Ramalingam and Reps in [31] and by Frigioni, MarchettiSpaccamela and Nanni in [18], respectively. The main goal of this paper is to provide a first experimental evidence for: (a) the effectiveness of dynamic algorithms for shortest paths with respect to a traditional static approach to this problem; (b) the validity of the theoretical model of output boundedness to analyze dynamic graph algorithms. Beside random generated graphs, useful to capture the "asymptotic" behavior of algorithms, we also develope experiments by considering a widely used graph from the real world, i.e., the Internet graph. Work partially supported by the ESPRIT Long Term Research Project...
Incremental heuristic search in artificial intelligence
 Artificial Intelligence Magazine
"... Incremental search reuses information from previous searches to find solutions to a series of similar search problems potentially faster than is possible by solving each search problem from scratch. This is important since many artificial intelligence systems have to adapt their plans continuously t ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
Incremental search reuses information from previous searches to find solutions to a series of similar search problems potentially faster than is possible by solving each search problem from scratch. This is important since many artificial intelligence systems have to adapt their plans continuously to changes in (their knowledge of) the world. In this article, we therefore give an overview of incremental search, focusing on Lifelong Planning A*, and outline some of its possible applications in artificial intelligence. Overview It is often important that searches be fast. Artificial intelligence has developed several ways of speeding up searches by trading off the search time and the cost of the resulting path. This includes using inadmissible heuristics (Pohl
Submatrix maximum queries in Monge matrices and partial Monge matrices, and their applications
, 2012
"... ..."
Exact Distance Oracles for Planar Graphs
, 2010
"... We provide the first linearspace data structure with provable sublinear query time for exact pointtopoint shortest path queries in planar graphs. We prove that for any planar graph G with nonnegative arc lengths and for any ɛ> 0 there is a data structure that supports exact shortest path and d ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
We provide the first linearspace data structure with provable sublinear query time for exact pointtopoint shortest path queries in planar graphs. We prove that for any planar graph G with nonnegative arc lengths and for any ɛ> 0 there is a data structure that supports exact shortest path and distance queries in G with the following properties: the data structure can be created in time O(n lg(n) lg(1/ɛ)), the space required is O(n lg(1/ɛ)), and the query time is O(n 1/2+ɛ). Previous data structures by Fakcharoenphol and Rao (JCSS’06), Klein, Mozes, and Weimann (TransAlg’10), and Mozes and WulffNilsen (ESA’10) with query time O(n 1/2 lg 2 n) use space at least Ω(n lg n / lg lg n). We also give a construction with a more general tradeoff. We prove that for any integer S ∈ [n lg n, n 2], we can construct in time Õ(S) a data structure of size O(S) that answers distance queries in O(nS −1/2 lg 2.5 n) time per query. Cabello (SODA’06) gave a comparable construction for the smaller range S ∈ [n 4/3 lg 1/3 n, n 2]. For the range S ∈ (n lg n, n 4/3 lg 1/3 n), only data structures of size O(S) with query time O(n 2 /S) had been known (Djidjev, WG’96). Combined, our results give the best query times for any shortestpath data structure for planar graphs with space S = o(n 4/3 lg 1/3 n). As a consequence, we also obtain an algorithm that computes k–many distances in planar graphs in time O((kn) 2/3 (lg n) 2 (lg lg n) −1/3 + n(lg n) 2 / lg lg n). 1
Incremental maintenance of shortest distance and transitive closure in firstorder logic and sql
 ACM Trans. Database Syst
"... Given a database, the view maintenance problem is concerned with the efficient computation of the new contents of a given view when updates to the database happen. We consider the view maintenance problem for the situation when the database contains a (weighted) graph and the view is either the tran ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
(Show Context)
Given a database, the view maintenance problem is concerned with the efficient computation of the new contents of a given view when updates to the database happen. We consider the view maintenance problem for the situation when the database contains a (weighted) graph and the view is either the transitive closure or the answer to the allpairs shortestdistance problem (APSD). We give incremental algorithms for (APSD), which support both edge insertions and deletions. For transitive closure, the algorithm is applicable to a more general class of graphs than those previously explored. Our algorithms use firstorder queries, along with addition (+) and lessthan (<) operations (F O(+, <)); they store O(n 2) number of tuples, where n is the number of vertices, and have AC 0 data complexity for integer weights. Since F O(+, <) is a sublanguage of SQL and is supported by almost all current database systems, our maintenance algorithms are more appropriate for database applications than nondatabase query type of maintenance algorithms.