Results 11  20
of
465
Analysis Of Multiresolution Image Denoising Schemes Using GeneralizedGaussian Priors
 IEEE TRANS. INFO. THEORY
, 1998
"... In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to ..."
Abstract

Cited by 177 (9 self)
 Add to MetaCart
In this paper, we investigate various connections between wavelet shrinkage methods in image processing and Bayesian estimation using Generalized Gaussian priors. We present fundamental properties of the shrinkage rules implied by Generalized Gaussian and other heavytailed priors. This allows us to show a simple relationship between differentiability of the logprior at zero and the sparsity of the estimates, as well as an equivalence between universal thresholding schemes and Bayesian estimation using a certain Generalized Gaussian prior.
Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit
, 2006
"... Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our pr ..."
Abstract

Cited by 172 (20 self)
 Add to MetaCart
Finding the sparsest solution to underdetermined systems of linear equations y = Φx is NPhard in general. We show here that for systems with ‘typical’/‘random ’ Φ, a good approximation to the sparsest solution is obtained by applying a fixed number of standard operations from linear algebra. Our proposal, Stagewise Orthogonal Matching Pursuit (StOMP), successively transforms the signal into a negligible residual. Starting with initial residual r0 = y, at the sth stage it forms the ‘matched filter ’ Φ T rs−1, identifies all coordinates with amplitudes exceeding a speciallychosen threshold, solves a leastsquares problem using the selected coordinates, and subtracts the leastsquares fit, producing a new residual. After a fixed number of stages (e.g. 10), it stops. In contrast to Orthogonal Matching Pursuit (OMP), many coefficients can enter the model at each stage in StOMP while only one enters per stage in OMP; and StOMP takes a fixed number of stages (e.g. 10), while OMP can take many (e.g. n). StOMP runs much faster than competing proposals for sparse solutions, such as ℓ1 minimization and OMP, and so is attractive for solving largescale problems. We use phase diagrams to compare algorithm performance. The problem of recovering a ksparse vector x0 from (y, Φ) where Φ is random n × N and y = Φx0 is represented by a point (n/N, k/n)
Sparse Geometric Image Representations with Bandelets
, 2004
"... This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image grey levels have regular variations. The image decomposition in ..."
Abstract

Cited by 148 (4 self)
 Add to MetaCart
This paper introduces a new class of bases, called bandelet bases, which decompose the image along multiscale vectors that are elongated in the direction of a geometric flow. This geometric flow indicates directions in which the image grey levels have regular variations. The image decomposition in a bandelet basis is implemented with a fast subband filtering algorithm. Bandelet bases lead to optimal approximation rates for geometrically regular images. For image compression and noise removal applications, the geometric flow is optimized with fast algorithms, so that the resulting bandelet basis produces a minimum distortion. Comparisons are made with wavelet image compression and noise removal algorithms.
Unconditional bases are optimal bases for data compression and for statistical estimation
 Applied and Computational Harmonic Analysis
, 1993
"... An orthogonal basis of L 2 which is also an unconditional basis of a functional space F is a kind of optimal basis for compressing, estimating, and recovering functions in F. Simple thresholding operations, applied in the unconditional basis, work essentially better for compressing, estimating, and ..."
Abstract

Cited by 140 (23 self)
 Add to MetaCart
An orthogonal basis of L 2 which is also an unconditional basis of a functional space F is a kind of optimal basis for compressing, estimating, and recovering functions in F. Simple thresholding operations, applied in the unconditional basis, work essentially better for compressing, estimating, and recovering than they do in any other orthogonal basis. In fact, simple thresholding in an unconditional basis works essentially better for recovery and estimation than other methods, period. (Performance is measured in an asymptotic minimax sense.) As an application, we formalize and prove Mallat's Heuristic, which says that wavelet bases are optimal for representing functions containing singularities, when there may be an arbitrary number of singularities, arbitrarily distributed.
Image Decomposition via the Combination of Sparse Representations and a Variational Approach
 IEEE Transactions on Image Processing
, 2004
"... The separation of image content into semantic parts plays a vital role in applications such as compression, enhancement, restoration, and more. In recent years several pioneering works suggested such a separation based on variational formulation, and others using independent component analysis and s ..."
Abstract

Cited by 127 (27 self)
 Add to MetaCart
The separation of image content into semantic parts plays a vital role in applications such as compression, enhancement, restoration, and more. In recent years several pioneering works suggested such a separation based on variational formulation, and others using independent component analysis and sparsity. This paper presents a novel method for separating images into texture and piecewise smooth (cartoon) parts, exploiting both the variational and the sparsity mechanisms. The method combines the Basis Pursuit Denoising (BPDN) algorithm and the TotalVariation (TV) regularization scheme. The basic idea presented in this paper is the use of two appropriate dictionaries, one for the representation of textures, and the other for the natural scene parts, assumed to be piecewisesmooth. Both dictionaries are chosen such that they lead to sparse representations over one type of imagecontent (either texture or piecewise smooth). The use of the BPDN with the two augmented dictionaries leads to the desired separation, along with noise removal as a byproduct. As the need to choose proper dictionaries is generally hard, a TV regularization is employed to better direct the separation process and reduce ringing artifacts. We present a highly e#cient numerical scheme to solve the combined optimization problem posed in our model, and show several experimental results that validate the algorithm's performance.
Interpolating Wavelet Transform
, 1992
"... We describe several "wavelet transforms" which characterize smoothness spaces and for which the coefficients are obtained by sampling rather than integration. We use them to reinterpret the empirical wavelet transform, i.e. the common practice of applying pyramid filters to samples of a function. ..."
Abstract

Cited by 127 (13 self)
 Add to MetaCart
We describe several "wavelet transforms" which characterize smoothness spaces and for which the coefficients are obtained by sampling rather than integration. We use them to reinterpret the empirical wavelet transform, i.e. the common practice of applying pyramid filters to samples of a function.
Building Your Own Wavelets at Home
"... Wavelets have been making an appearance in many pure and applied areas of science and engineering. Computer graphics with its many and varied computational problems has been no exception to this rule. In these notes we will attempt to motivate and explain the basic ideas behind wavelets and what mak ..."
Abstract

Cited by 127 (13 self)
 Add to MetaCart
Wavelets have been making an appearance in many pure and applied areas of science and engineering. Computer graphics with its many and varied computational problems has been no exception to this rule. In these notes we will attempt to motivate and explain the basic ideas behind wavelets and what makes them so successful in application areas. The main
Datadriven bandwidth selection in local polynomial fitting: variable bandwidth and spatial adaption
, 1993
"... ..."
Basis Pursuit
, 1994
"... The TimeFrequency and TimeScale communities have recently developed an enormous number of overcomplete signal dictionaries  wavelets, wavelet packets, cosine packets, wilson bases, chirplets, warped bases, and hyperbolic cross bases being a few examples. Basis Pursuit is a technique for decompos ..."
Abstract

Cited by 119 (15 self)
 Add to MetaCart
The TimeFrequency and TimeScale communities have recently developed an enormous number of overcomplete signal dictionaries  wavelets, wavelet packets, cosine packets, wilson bases, chirplets, warped bases, and hyperbolic cross bases being a few examples. Basis Pursuit is a technique for decomposing a signal into an "optimal" superposition of dictionary elements. The optimization criterion is the l 1 norm of coefficients. The method has several advantages over Matching Pursuit and Best Ortho Basis, including superresolution and stability. 1 Introduction Over the last five years or so, there has been an explosion of awareness of alternatives to traditional signal representations. Instead of just representing objects as superpositions of sinusoids (the traditional Fourier representation) we now have available alternate dictionaries  signal representation schemes  of which the Wavelets dictionary is only the most wellknown. Wavelet dictionaries, Gabor dictionaries, Multiscale...