Results 1  10
of
465
DeNoising By SoftThresholding
, 1992
"... Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an a ..."
Abstract

Cited by 798 (13 self)
 Add to MetaCart
Donoho and Johnstone (1992a) proposed a method for reconstructing an unknown function f on [0; 1] from noisy data di = f(ti)+ zi, iid i =0;:::;n 1, ti = i=n, zi N(0; 1). The reconstruction fn ^ is de ned in the wavelet domain by translating all the empirical wavelet coe cients of d towards 0 by an amount p 2 log(n) = p n. We prove two results about that estimator. [Smooth]: With high probability ^ fn is at least as smooth as f, in any of a wide variety of smoothness measures. [Adapt]: The estimator comes nearly as close in mean square to f as any measurable estimator can come, uniformly over balls in each of two broad scales of smoothness classes. These two properties are unprecedented in several ways. Our proof of these results develops new facts about abstract statistical inference and its connection with an optimal recovery model.
Adapting to unknown smoothness via wavelet shrinkage
 JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION
, 1995
"... We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the princip ..."
Abstract

Cited by 675 (19 self)
 Add to MetaCart
We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coefficients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computational effort of the overall procedure is order N log(N) as a function of the sample size N. SureShrink is smoothnessadaptive: if the unknown function contains jumps, the reconstruction (essentially) does also; if the unknown function has a smooth piece, the reconstruction is (essentially) as smooth as the mother wavelet will allow. The procedure is in a sense optimally smoothnessadaptive: it is nearminimax simultaneously over a whole interval of the Besov scale; the size of this interval depends on the choice of mother wavelet. We know from a previous paper by the authors that traditional smoothing methods  kernels, splines, and orthogonal series estimates  even with optimal choices of the smoothing parameter, would be unable to perform
A review of image denoising algorithms, with a new one
 Simul
, 2005
"... Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstand ..."
Abstract

Cited by 265 (2 self)
 Add to MetaCart
Abstract. The search for efficient image denoising methods is still a valid challenge at the crossing of functional analysis and statistics. In spite of the sophistication of the recently proposed methods, most algorithms have not yet attained a desirable level of applicability. All show an outstanding performance when the image model corresponds to the algorithm assumptions but fail in general and create artifacts or remove image fine structures. The main focus of this paper is, first, to define a general mathematical and experimental methodology to compare and classify classical image denoising algorithms and, second, to propose a nonlocal means (NLmeans) algorithm addressing the preservation of structure in a digital image. The mathematical analysis is based on the analysis of the “method noise, ” defined as the difference between a digital image and its denoised version. The NLmeans algorithm is proven to be asymptotically optimal under a generic statistical image model. The denoising performance of all considered methods are compared in four ways; mathematical: asymptotic order of magnitude of the method noise under regularity assumptions; perceptualmathematical: the algorithms artifacts and their explanation as a violation of the image model; quantitative experimental: by tables of L 2 distances of the denoised version to the original image. The most powerful evaluation method seems, however, to be the visualization of the method noise on natural images. The more this method noise looks like a real white noise, the better the method.
Minimax Estimation via Wavelet Shrinkage
, 1992
"... We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minim ..."
Abstract

Cited by 246 (32 self)
 Add to MetaCart
We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minimax over any member of a wide range of Triebel and Besovtype smoothness constraints, and asymptotically minimax over Besov bodies with p q. Linear estimates cannot achieve even the minimax rates over Triebel and Besov classes with p <2, so our method can signi cantly outperform every linear method (kernel, smoothing spline, sieve,:::) in a minimax sense. Variants of our method based on simple threshold nonlinearities are nearly minimax. Our method possesses the interpretation of spatial adaptivity: it reconstructs using a kernel which mayvary in shape and bandwidth from point to point, depending on the data. Least favorable distributions for certain of the Triebel and Besov scales generate objects with sparse wavelet transforms. Many real objects have similarly sparse transforms, which suggests that these minimax results are relevant for practical problems. Sequels to this paper discuss practical implementation, spatial adaptation properties and applications to inverse problems.
Wavelet shrinkage: asymptopia
 Journal of the Royal Statistical Society, Ser. B
, 1995
"... Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators bein ..."
Abstract

Cited by 239 (35 self)
 Add to MetaCart
Considerable e ort has been directed recently to develop asymptotically minimax methods in problems of recovering in nitedimensional objects (curves, densities, spectral densities, images) from noisy data. A rich and complex body of work has evolved, with nearly or exactly minimax estimators being obtained for a variety of interesting problems. Unfortunately, the results have often not been translated into practice, for a variety of reasons { sometimes, similarity to known methods, sometimes, computational intractability, and sometimes, lack of spatial adaptivity. We discuss a method for curve estimation based on n noisy data; one translates the empirical wavelet coe cients towards the origin by an amount p p 2 log(n) = n. The method is di erent from methods in common use today, is computationally practical, and is spatially adaptive; thus it avoids a number of previous objections to minimax estimators. At the same time, the method is nearly minimax for a wide variety of loss functions { e.g. pointwise error, global error measured in L p norms, pointwise and global error in estimation of derivatives { and for a wide range of smoothness classes, including standard Holder classes, Sobolev classes, and Bounded Variation. This is amuch broader nearoptimality than anything previously proposed in the minimax literature. Finally, the theory underlying the method is interesting, as it exploits a correspondence between statistical questions and questions of optimal recovery and informationbased complexity.
Adaptive Wavelet Thresholding for Image Denoising and Compression
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2000
"... The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing ..."
Abstract

Cited by 230 (4 self)
 Add to MetaCart
The first part of this paper proposes an adaptive, datadriven threshold for image denoising via wavelet softthresholding. The threshold is derived in a Bayesian framework, and the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) widely used in image processing applications. The proposed threshold is simple and closedform, and it is adaptive to each subband because it depends on datadriven estimates of the parameters. Experimental results show that the proposed method, called BayesShrink, is typically within 5% of the MSE of the best softthresholding benchmark with the image assumed known. It also outperforms Donoho and Johnstone's SureShrink most of the time. The second part
Translationinvariant denoising
, 1995
"... DeNoising with the traditional (orthogonal, maximallydecimated) wavelet transform sometimes exhibits visual artifacts; we attribute some of these – for example, Gibbs phenomena in the neighborhood of discontinuities – to the lack of translation invariance of the wavelet basis. One method to suppre ..."
Abstract

Cited by 228 (8 self)
 Add to MetaCart
DeNoising with the traditional (orthogonal, maximallydecimated) wavelet transform sometimes exhibits visual artifacts; we attribute some of these – for example, Gibbs phenomena in the neighborhood of discontinuities – to the lack of translation invariance of the wavelet basis. One method to suppress such artifacts, termed “cycle spinning ” by Coifman, is to “average out ” the translation dependence. For a range of shifts, one shifts the data (right or left as the case may be), DeNoises the shifted data, and then unshifts the denoised data. Doing this for each of a range of shifts, and averaging the several results so obtained, produces a reconstruction subject to far weaker Gibbs phenomena than thresholding based DeNoising using the traditional orthogonal wavelet transform. CycleSpinning over the range of all circulant shifts can be accomplished in order nlog 2(n) time; it is equivalent to denoising using the undecimated or stationary wavelet transform. Cyclespinning exhibits benefits outside of wavelet denoising, for example in cosine packet denoising, where it helps suppress ‘clicks’. It also has a counterpart in frequency domain denoising, where the goal of translationinvariance is replaced by modulation invariance, and the central shiftDeNoiseunshift operation is replaced by modulateDeNoisedemodulate. We illustrate these concepts with extensive computational examples; all figures presented here are reproducible using the WaveLab software package. 1
Wavelet Threshold Estimators for Data With Correlated Noise
, 1994
"... Wavelet threshold estimators for data with stationary correlated noise are constructed by the following prescription. First, form the discrete wavelet transform of the data points. Next, apply a leveldependent soft threshold to the individual coefficients, allowing the thresholds to depend on the l ..."
Abstract

Cited by 182 (13 self)
 Add to MetaCart
Wavelet threshold estimators for data with stationary correlated noise are constructed by the following prescription. First, form the discrete wavelet transform of the data points. Next, apply a leveldependent soft threshold to the individual coefficients, allowing the thresholds to depend on the level in the wavelet transform. Finally, transform back to obtain the estimate in the original domain. The threshold used at level j is s j p 2 log n, where s j is the standard deviation of the coefficients at that level, and n is the overall sample size. The minimax properties of the estimators are investigated by considering a general problem in multivariate normal decision theory, concerned with the estimation of the mean vector of a general multivariate normal distribution subject to squared error loss. An ideal risk is obtained by the use of an `oracle' that provides the optimum diagonal projection estimate. This `benchmark' risk can be considered in its own right as a measure of the s...
Spatially Adaptive Wavelet Thresholding with Context Modeling for Image Denoising
 IEEE Trans. Image Processing
, 2000
"... The method of wavelet thresholding for removing noise, or denoising, has been researched extensively due to its effectiveness and simplicity. Much of the literature has focused on developing the best uniform threshold or best basis selection. However, not much has been done to make the threshold val ..."
Abstract

Cited by 178 (2 self)
 Add to MetaCart
The method of wavelet thresholding for removing noise, or denoising, has been researched extensively due to its effectiveness and simplicity. Much of the literature has focused on developing the best uniform threshold or best basis selection. However, not much has been done to make the threshold values adaptive to the spatially changing statistics of images. Such adaptivity can improve the wavelet thresholding performance because it allows additional local information of the image (such as the identification of smooth or edge regions) to be incorporated into the algorithm. This work proposes a spatially adaptive wavelet thresholding method based on context modeling, a common technique used in image compression to adapt the coder to changing image characteristics. Each wavelet coefficient is modeled as a random variable of a generalized Gaussian distribution with an unknown parameter. Context modeling is used to estimate the parameter for each coefficient, which is then used to adapt the thresholding strategy. This spatially adaptive thresholding is extended to the overcomplete wavelet expansion, which yields better results than the orthogonal transform. Experimental results show that spatially adaptive wavelet thresholding yields significantly superior image quality and lower MSE than the best uniform thresholding with the original image assumed known.