Results 1  10
of
1,379
Atomic decomposition by basis pursuit
 SIAM Journal on Scientific Computing
, 1998
"... Abstract. The timefrequency and timescale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several meth ..."
Abstract

Cited by 1660 (43 self)
 Add to MetaCart
Abstract. The timefrequency and timescale communities have recently developed a large number of overcomplete waveform dictionaries — stationary wavelets, wavelet packets, cosine packets, chirplets, and warplets, to name a few. Decomposition into overcomplete systems is not unique, and several methods for decomposition have been proposed, including the method of frames (MOF), Matching pursuit (MP), and, for special dictionaries, the best orthogonal basis (BOB). Basis Pursuit (BP) is a principle for decomposing a signal into an “optimal ” superposition of dictionary elements, where optimal means having the smallest l 1 norm of coefficients among all such decompositions. We give examples exhibiting several advantages over MOF, MP, and BOB, including better sparsity and superresolution. BP has interesting relations to ideas in areas as diverse as illposed problems, in abstract harmonic analysis, total variation denoising, and multiscale edge denoising. BP in highly overcomplete dictionaries leads to largescale optimization problems. With signals of length 8192 and a wavelet packet dictionary, one gets an equivalent linear program of size 8192 by 212,992. Such problems can be attacked successfully only because of recent advances in linear programming by interiorpoint methods. We obtain reasonable success with a primaldual logarithmic barrier method and conjugategradient solver.
Orthonormal bases of compactly supported wavelets
 Commun Pure Appl Math 41:906–966
, 1988
"... Abstract. Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988) ..."
Abstract

Cited by 1570 (27 self)
 Add to MetaCart
Abstract. Several variations are given on the construction of orthonormal bases of wavelets with compact support. They have, respectively, more symmetry, more regularity, or more vanishing moments for the scaling function than the examples constructed in Daubechies [Comm. Pure Appl. Math., 41 (1988), pp. 909996]. Key words, wavelets, orthonormal bases, regularity, symmetry AMS(MOS) subject classifications. 26A16, 26A18, 26A27, 39B12
Contentbased image retrieval at the end of the early years
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... The paper presents a review of 200 references in contentbased image retrieval. The paper starts with discussing the working conditions of contentbased retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for imag ..."
Abstract

Cited by 1135 (19 self)
 Add to MetaCart
The paper presents a review of 200 references in contentbased image retrieval. The paper starts with discussing the working conditions of contentbased retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.
Matching pursuits with timefrequency dictionaries
 IEEE Transactions on Signal Processing
, 1993
"... AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures t ..."
Abstract

Cited by 1048 (13 self)
 Add to MetaCart
AbstractWe introduce an algorithm, called matching pursuit, that decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. Matching pursuits are general procedures to compute adaptive signal representations. With a dictionary of Gabor functions a matching pursuit defines an adaptive timefrequency transform. We derive a signal energy distribution in the timefrequency plane, which does not include interference terms, unlike Wigner and Cohen class distributions. A matching pursuit isolates the signal structures that are coherent with respect to a given dictionary. An application to pattern extraction from noisy signals is described. We compare a matching pursuit decomposition with a signal expansion over an optimized wavepacket orthonormal basis, selected with the algorithm of Coifman and Wickerhauser. I.
Factoring wavelet transforms into lifting steps
 J. Fourier Anal. Appl
, 1998
"... ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This dec ..."
Abstract

Cited by 434 (7 self)
 Add to MetaCart
ABSTRACT. This paper is essentially tutorial in nature. We show how any discrete wavelet transform or two band subband filtering with finite filters can be decomposed into a finite sequence of simple filtering steps, which we call lifting steps but that are also known as ladder structures. This decomposition corresponds to a factorization of the polyphase matrix of the wavelet or subband filters into elementary matrices. That such a factorization is possible is wellknown to algebraists (and expressed by the formula); it is also used in linear systems theory in the electrical engineering community. We present here a selfcontained derivation, building the decomposition from basic principles such as the Euclidean algorithm, with a focus on applying it to wavelet filtering. This factorization provides an alternative for the lattice factorization, with the advantage that it can also be used in the biorthogonal, i.e, nonunitary case. Like the lattice factorization, the decomposition presented here asymptotically reduces the computational complexity of the transform by a factor two. It has other applications, such as the possibility of defining a waveletlike transform that maps integers to integers. 1.
SIMPLIcity: SemanticsSensitive Integrated Matching for Picture LIbraries
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2001
"... The need for efficient contentbased image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an imag ..."
Abstract

Cited by 389 (30 self)
 Add to MetaCart
The need for efficient contentbased image retrieval has increased tremendously in many application areas such as biomedicine, military, commerce, education, and Web image classification and searching. We present here SIMPLIcity (Semanticssensitive Integrated Matching for Picture LIbraries), an image retrieval system, which uses semantics classification methods, a waveletbased approach for feature extraction, and integrated region matching based upon image segmentation. As in other regionbased retrieval systems, an image is represented by a set of regions, roughly corresponding to objects, which are characterized by color, texture, shape, and location. The system classifies images into semantic categories, such as texturednontextured, graphphotograph. Potentially, the categorization enhances retrieval by permitting semanticallyadaptive searching methods and narrowing down the searching range in a database. A measure for the overall similarity between images is developed using a regionmatching scheme that integrates properties of all the regions in the images. Compared with retrieval based on individual regions, the overall similarity approach 1) reduces the adverse effect of inaccurate segmentation, 2) helps to clarify the semantics of a particular region, and 3) enables a simple querying interface for regionbased image retrieval systems. The application of SIMPLIcity to several databases, including a database of about 200,000 generalpurpose images, has demonstrated that our system performs significantly better and faster than existing ones. The system is fairly robust to image alterations.
The Lifting Scheme: A Construction Of Second Generation Wavelets
, 1997
"... . We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to ..."
Abstract

Cited by 377 (16 self)
 Add to MetaCart
. We present the lifting scheme, a simple construction of second generation wavelets, wavelets that are not necessarily translates and dilates of one fixed function. Such wavelets can be adapted to intervals, domains, surfaces, weights, and irregular samples. We show how the lifting scheme leads to a faster, inplace calculation of the wavelet transform. Several examples are included. Key words. wavelet, multiresolution, second generation wavelet, lifting scheme AMS subject classifications. 42C15 1. Introduction. Wavelets form a versatile tool for representing general functions or data sets. Essentially we can think of them as data building blocks. Their fundamental property is that they allow for representations which are efficient and which can be computed fast. In other words, wavelets are capable of quickly capturing the essence of a data set with only a small set of coefficients. This is based on the fact that most data sets have correlation both in time (or space) and frequenc...
Uncertainty principles and ideal atomic decomposition
 IEEE Transactions on Information Theory
, 2001
"... Suppose a discretetime signal S(t), 0 t
Abstract

Cited by 361 (19 self)
 Add to MetaCart
Suppose a discretetime signal S(t), 0 t<N, is a superposition of atoms taken from a combined time/frequency dictionary made of spike sequences 1ft = g and sinusoids expf2 iwt=N) = p N. Can one recover, from knowledge of S alone, the precise collection of atoms going to make up S? Because every discretetime signal can be represented as a superposition of spikes alone, or as a superposition of sinusoids alone, there is no unique way of writing S as a sum of spikes and sinusoids in general. We prove that if S is representable as a highly sparse superposition of atoms from this time/frequency dictionary, then there is only one such highly sparse representation of S, and it can be obtained by solving the convex optimization problem of minimizing the `1 norm of the coe cients among all decompositions. Here \highly sparse " means that Nt + Nw < p N=2 where Nt is the number of time atoms, Nw is the number of frequency atoms, and N is the length of the discretetime signal.
Multiresolution Analysis for Surfaces Of Arbitrary . . .
, 1993
"... Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our k ..."
Abstract

Cited by 336 (3 self)
 Add to MetaCart
Multiresolution analysis provides a useful and efficient tool for representing shape and analyzing features at multiple levels of detail. Although the technique has met with considerable success when applied to univariate functions, images, and more generally to functions defined on lR , to our knowledge it has not been extended to functions defined on surfaces of arbitrary genus. In this