Results 1  10
of
164
Algorithms for the Satisfiability (SAT) Problem: A Survey
 DIMACS Series in Discrete Mathematics and Theoretical Computer Science
, 1996
"... . The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, compute ..."
Abstract

Cited by 124 (3 self)
 Add to MetaCart
. The satisfiability (SAT) problem is a core problem in mathematical logic and computing theory. In practice, SAT is fundamental in solving many problems in automated reasoning, computeraided design, computeraided manufacturing, machine vision, database, robotics, integrated circuit design, computer architecture design, and computer network design. Traditional methods treat SAT as a discrete, constrained decision problem. In recent years, many optimization methods, parallel algorithms, and practical techniques have been developed for solving SAT. In this survey, we present a general framework (an algorithm space) that integrates existing SAT algorithms into a unified perspective. We describe sequential and parallel SAT algorithms including variable splitting, resolution, local search, global optimization, mathematical programming, and practical SAT algorithms. We give performance evaluation of some existing SAT algorithms. Finally, we provide a set of practical applications of the sat...
The Constrainedness of Search
 In Proceedings of AAAI96
, 1999
"... We propose a definition of `constrainedness' that unifies two of the most common but informal uses of the term. These are that branching heuristics in search algorithms often try to make the most "constrained" choice, and that hard search problems tend to be "critically constrain ..."
Abstract

Cited by 116 (26 self)
 Add to MetaCart
We propose a definition of `constrainedness' that unifies two of the most common but informal uses of the term. These are that branching heuristics in search algorithms often try to make the most "constrained" choice, and that hard search problems tend to be "critically constrained". Our definition of constrainedness generalizes a number of parameters used to study phase transition behaviour in a wide variety of problem domains. As well as predicting the location of phase transitions in solubility, constrainedness provides insight into why problems at phase transitions tend to be hard to solve. Such problems are on a constrainedness "knifeedge", and we must search deep into the problem before they look more or less soluble. Heuristics that try to get off this knifeedge as quickly as possible by, for example, minimizing the constrainedness are often very effective. We show that heuristics from a wide variety of problem domains can be seen as minimizing the constrainedness (or proxies ...
Finding Hard Instances of the Satisfiability Problem: A Survey
, 1997
"... . Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case ..."
Abstract

Cited by 113 (1 self)
 Add to MetaCart
. Finding sets of hard instances of propositional satisfiability is of interest for understanding the complexity of SAT, and for experimentally evaluating SAT algorithms. In discussing this we consider the performance of the most popular SAT algorithms on random problems, the theory of average case complexity, the threshold phenomenon, known lower bounds for certain classes of algorithms, and the problem of generating hard instances with solutions.
Simplified and Improved Resolution Lower Bounds
 IN PROCEEDINGS OF THE 37TH IEEE FOCS
, 1996
"... We give simple new lower bounds on the lengths of Resolution proofs for the pigeonhole principle and for randomly generated formulas. For random formulas, our bounds significantly extend the range of formula sizes for which nontrivial lower bounds are known. For example, we show that with probabili ..."
Abstract

Cited by 100 (7 self)
 Add to MetaCart
We give simple new lower bounds on the lengths of Resolution proofs for the pigeonhole principle and for randomly generated formulas. For random formulas, our bounds significantly extend the range of formula sizes for which nontrivial lower bounds are known. For example, we show that with probability approaching 1, any Resolution refutation of a randomly chosen 3CNF formula with at most n 6=5\Gammaffl clauses requires exponential size. Previous bounds applied only when the number of clauses was at most linear in the number of variables. For the pigeonhole principle our bound is a small improvement over previous bounds. Our proofs are more elementary than previous arguments, and establish a connection between Resolution proof size and maximum clause size.
Generating Hard Satisfiability Problems
 Artificial Intelligence
, 1996
"... We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible ..."
Abstract

Cited by 98 (2 self)
 Add to MetaCart
We report results from largescale experiments in satisfiability testing. As has been observed by others, testing the satisfiability of random formulas often appears surprisingly easy. Here we show that by using the right distribution of instances, and appropriate parameter values, it is possible to generate random formulas that are hard, that is, for which satisfiability testing is quite difficult. Our results provide a benchmark for the evaluation of satisfiabilitytesting procedures. In Artificial Intelligence, 81 (19996) 1729. 1 Introduction Many computational tasks of interest to AI, to the extent that they can be precisely characterized at all, can be shown to be NPhard in their most general form. However, there is fundamental disagreement, at least within the AI community, about the implications of this. It is claimed on the one hand that since the performance of algorithms designed to solve NPhard tasks degrades rapidly with small increases in input size, something ...
Typical random 3SAT formulae and the satisfiability threshold
 in Proceedings of the Eleventh ACMSIAM Symposium on Discrete Algorithms
, 2000
"... Abstract: We present a new structural (or syntactic) approach for estimating the satisfiability threshold of random 3SAT formulae. We show its efficiency in obtaining a jump from the previous upper bounds, lowering them to 4.506. The method combines well with other techniques, and also applies to o ..."
Abstract

Cited by 84 (2 self)
 Add to MetaCart
Abstract: We present a new structural (or syntactic) approach for estimating the satisfiability threshold of random 3SAT formulae. We show its efficiency in obtaining a jump from the previous upper bounds, lowering them to 4.506. The method combines well with other techniques, and also applies to other problems, such as the 3colourability of random graphs. 1
Approximating the unsatisfiability threshold of random formulas
, 1998
"... ABSTRACT: Let � be a random Boolean formula that is an instance of 3SAT. We consider the problem of computing the least real number � such that if the ratio of the number of clauses over the number of variables of � strictly exceeds �, then � is almost certainly unsatisfiable. By a wellknown and m ..."
Abstract

Cited by 82 (14 self)
 Add to MetaCart
ABSTRACT: Let � be a random Boolean formula that is an instance of 3SAT. We consider the problem of computing the least real number � such that if the ratio of the number of clauses over the number of variables of � strictly exceeds �, then � is almost certainly unsatisfiable. By a wellknown and more or less straightforward argument, it can be shown that ��5.191. This upper bound was improved by Kamath et al. to 4.758 by first providing new improved bounds for the occupancy problem. There is strong experimental evidence that the value of � is around 4.2. In this work, we define, in terms of the random formula �, a decreasing sequence of random variables such that, if the expected value of any one of them converges to zero, then � is almost certainly unsatisfiable. By letting the expected value of the first term of the sequence converge to zero, we obtain, by simple and elementary computations, an upper bound for � equal to 4.667. From the expected value of the second term of the sequence, we get the value 4.601�. In general, by letting the
Random Constraint Satisfaction: A More Accurate Picture
, 1997
"... Recently there has been a great amount of interest in Random Constraint Satisfaction Problems, both from an experimental and a theoretical point of view. Rather intruigingly, experimental results with various models for generating random CSP instances suggest a "thresholdlike" behaviou ..."
Abstract

Cited by 77 (7 self)
 Add to MetaCart
Recently there has been a great amount of interest in Random Constraint Satisfaction Problems, both from an experimental and a theoretical point of view. Rather intruigingly, experimental results with various models for generating random CSP instances suggest a "thresholdlike" behaviour and some theoretical work has been done in analyzing these models when the number of variables is asymptotic. In this paper we show that the models commonly used for generating random CSP instances suffer from a wrong parameterization which makes them unsuitable for asymptotic analysis. In particular, when the number of variables becomes large almost all instances they generate are, trivially, overconstrained. We then present a new model that is suitable for asymptotic analysis and, in the spirit of random SAT, we derive lower and upper bounds for its parameters so that the instances generated are "almost surely" over and underconstrained, respectively. Finally, we apply the technique introduced in [19], to one of the popular models in Artificial Intelligence and derive sharper estimates for the probability of being overconstrained as a function of the number of variables. 1
Lower bounds for random 3SAT via differential equations
 THEORETICAL COMPUTER SCIENCE
, 2001
"... ..."
The Probabilistic Analysis of a Greedy Satisfiability Algorithm
, 2002
"... Consider the following simple, greedy DavisPutnam algorithm applied to a random 3CNF formula of fixed density (clauses to variables ratio): Arbitrarily select and set to True a literal that appears in as many clauses as possible, irrespective of their size (and irrespective of the number of occu ..."
Abstract

Cited by 68 (5 self)
 Add to MetaCart
Consider the following simple, greedy DavisPutnam algorithm applied to a random 3CNF formula of fixed density (clauses to variables ratio): Arbitrarily select and set to True a literal that appears in as many clauses as possible, irrespective of their size (and irrespective of the number of occurrences of the negation of the literal). Delete these clauses from the formula, and also delete the negation of this literal from any clauses it appears. Repeat. If however unit clauses ever appear, then first repeatedly and in any order set the literals in them to True and delete and shrink clauses accordingly, until no unit clause remains. Also if at any step an empty clause appears, then do not backtrack, but just terminate the algorithm and report failure. A slight modification of this algorithm is probabilistically analyzed in this paper (rigorously). It is proved that for random formulas of n variables and density up to 3.42, it succeeds in producing a satisfying truth assignment with bounded away from zero probability, as n approaches infinity. Therefore the satisfiability threshold is at least 3.42.