Results 1  10
of
28
The curvelet transform for image denoising
 IEEE TRANS. IMAGE PROCESS
, 2002
"... We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A cen ..."
Abstract

Cited by 284 (38 self)
 Add to MetaCart
We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourierdomain computation of an approximate digital Radon transform. We introduce a very simple interpolation in Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudopolar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of à trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with “state of the art ” techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including treebased Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than waveletbased reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.
The Finite Ridgelet Transform for Image Representation
 IEEE Transactions on Image Processing
, 2003
"... The ridgelet transform [6] was introduced as a sparse expansion for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we propose an orthonormal version of the ridgelet transform for discrete and finite size images. Our construction uses the finite ..."
Abstract

Cited by 71 (2 self)
 Add to MetaCart
The ridgelet transform [6] was introduced as a sparse expansion for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we propose an orthonormal version of the ridgelet transform for discrete and finite size images. Our construction uses the finite Radon transform (FRAT) [11], [20] as a building block. To overcome the periodization effect of a finite transform, we introduce a novel ordering of the FRAT coefficients. We also analyze the FRAT as a frame operator and derive the exact frame bounds. The resulting finite ridgelet transform (FRIT) is invertible, nonredundant and computed via fast algorithms. Furthermore, this construction leads to a family of directional and orthonormal bases for images. Numerical results show that the FRIT is more effective than the wavelet transform in approximating and denoising images with straight edges.
Reconstruction from projections based on detection and estimation of objectsParts I and 11: Performance analysis and robustness analysis
 IEEE Trans. Acoust., Speech, Signal Processing
, 1984
"... AbstructThe problem of reconstructing a multidimensional field from noisy, limited projection measurements is approached using an objectbased stochastic field model. Objects within a cross section are characterized by a fiitedimensional set of parameters, which are estimated directly from limited ..."
Abstract

Cited by 55 (11 self)
 Add to MetaCart
AbstructThe problem of reconstructing a multidimensional field from noisy, limited projection measurements is approached using an objectbased stochastic field model. Objects within a cross section are characterized by a fiitedimensional set of parameters, which are estimated directly from limited, noisy projection measurements using maximum likelihood estimation. In Part I, the computational structure and performance of the ML estimation procedure are investigated for the problem of locating a single object in a deterministic background; simulations are also presented. In Part 11, the issue of robustness to modeling errors is addressed. PART I PERFORMANCE ANALYSIS
Multiresolution representations using the autocorrelation functions of compactly supported wavelets
 IEEE Trans. Signal Processing
, 1993
"... CT 06520 0 ..."
Fast slant stack: A notion of Radon transform for data in a Cartesian grid which is rapidly computible, algebraically exact, geometrically faithful and invertible
 SIAM J. Sci. Comput
, 2001
"... Abstract. We define a notion of Radon Transform for data in an n by n grid. It is based on summation along lines of absolute slope less than 1 (as a function either of x or of y), with values at nonCartesian locations defined using trigonometric interpolation on a zeropadded grid. The definition i ..."
Abstract

Cited by 48 (11 self)
 Add to MetaCart
Abstract. We define a notion of Radon Transform for data in an n by n grid. It is based on summation along lines of absolute slope less than 1 (as a function either of x or of y), with values at nonCartesian locations defined using trigonometric interpolation on a zeropadded grid. The definition is geometrically faithful: the lines exhibit no ‘wraparound effects’. For a special set of lines equispaced in slope (rather than angle), we describe an exact algorithm which uses O(N log N) flops, where N = n2 is the number of pixels. This relies on a discrete projectionslice theorem relating this Radon transform and what we call the Pseudopolar Fourier transform. The Pseudopolar FT evaluates the 2D Fourier transform on a nonCartesian pointset, which we call the pseudopolar grid. Fast Pseudopolar FT – the process of rapid exact evaluation of the 2D Fourier transform at these nonCartesian grid points – is possible using chirpZ transforms. This Radon transform is onetoone and hence invertible on its range; it is rapidly invertible to any degree of desired accuracy using a preconditioned conjugate gradient solver. Empirically, the numerical conditioning is superb; the singular value spread of the preconditioned Radon transform turns out numerically to be less than 10%, and three iterations of the conjugate gradient solver typically suffice for 6 digit accuracy. We also describe a 3D version of the transform.
A framework for discrete integral transformations II – the 2D 31 Radon transform
"... This paper is dedicated to the memory of Professor Moshe Israeli 19402007, who passed away on February 18. Computing the Fourier transform of a function in polar coordinates is an important building block in many scientific disciplines and numerical schemes. In this paper we present the pseudopola ..."
Abstract

Cited by 20 (10 self)
 Add to MetaCart
This paper is dedicated to the memory of Professor Moshe Israeli 19402007, who passed away on February 18. Computing the Fourier transform of a function in polar coordinates is an important building block in many scientific disciplines and numerical schemes. In this paper we present the pseudopolar Fourier transform that samples the Fourier transform on the pseudopolar grid, also known as the concentric squares grid. The pseudopolar grid consists of equally spaced samples along rays, where different rays are equally spaced and not equally angled. The pseudopolar Fourier transform Fourier transform is shown to be fast (the same complexity as the FFT), stable, invertible, requires only
Integrated Volume Compression and Visualization
, 1997
"... Volumetric data sets require enormous storage capacity even at moderate resolution levels. The excessive storage demands not only stress the capacity of the underlying storage and communications systems, but also seriously limit the speed of volume rendering due to data movement and manipulation. A ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
Volumetric data sets require enormous storage capacity even at moderate resolution levels. The excessive storage demands not only stress the capacity of the underlying storage and communications systems, but also seriously limit the speed of volume rendering due to data movement and manipulation. A novel volumetric data visualization scheme is proposed and implemented in this work that renders 2D images directly from compressed 3D data sets. The novelty of this algorithm is that rendering is performed on the compressed representation of the volumetric data without predecompression. As a result, the overheads associated with both data movement and rendering processing are significantly reduced. The proposed algorithm generalizes previously proposed wholevolume frequencydomain rendering schemes by first dividing the 3D data set into subcubes, transforming each subcube to a frequencydomain representation, and applying the Fourier Projection Theorem to produce the projected 2D images a...
Overview of methods for image reconstruction from projections in emission computed tomography
 PROC. IEEE
, 2003
"... Emission computed tomography (ECT) is a technology for medical imaging whose importance is increasing rapidly. There is a growing appreciation for the value of the functional (as opposed to anatomical) information that is provided by ECT and there are significant advancements taking place, both in t ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Emission computed tomography (ECT) is a technology for medical imaging whose importance is increasing rapidly. There is a growing appreciation for the value of the functional (as opposed to anatomical) information that is provided by ECT and there are significant advancements taking place, both in the instrumentation for data collection, and in the computer methods for generating images from the measured data. These computer methods are designed to solve the inverse problem known as “image reconstruction from projections.” This paper uses the various models of the data collection process as the framework for presenting an overview of the wide variety of methods that have been developed for image reconstruction in the major subfields of ECT, which are positron emission tomography (PET) and singlephoton emission computed tomography (SPECT). The overall sequence of the major sections in the paper, and the presentation within each major section, both proceed from the more realistic and general models to those that are idealized and application specific. For most of the topics, the description proceeds from the threedimensional case to the twodimensional case. The paper presents a broad overview of algorithms for PET and SPECT, giving references to the literature where these algorithms and their applications are described in more detail.
Fast and accurate Polar Fourier transform
 Appl. Comput. Harmon. Anal.
, 2006
"... In a wide range of applied problems of 2D and 3D imaging a continuous formulation of the problem places great emphasis on obtaining and manipulating the Fourier transform in Polar coordinates. However, the translation of continuum ideas into practical work with data sampled on a Cartesian grid is pr ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
In a wide range of applied problems of 2D and 3D imaging a continuous formulation of the problem places great emphasis on obtaining and manipulating the Fourier transform in Polar coordinates. However, the translation of continuum ideas into practical work with data sampled on a Cartesian grid is problematic. In this article we develop a fast high accuracy Polar FFT. For a given twodimensional signal of size N × N, the proposed algorithm’s complexity is O(N^2 log N), just like in a Cartesian 2DFFT. A special feature of our approach is that it involves only 1D equispaced FFT’s and 1D interpolations. A central tool in our method is the pseudoPolar FFT, an FFT where the evaluation frequencies lie in an oversampled set of nonangularly equispaced points. We describe the concept of pseudoPolar domain, including fast forward and inverse transforms. For those interested primarily in Polar FFT’s, the pseudoPolar FFT plays the role of a halfway point—a nearlyPolar system from which conversion to Polar coordinates uses processes relying purely on 1D FFT’s and interpolation operations. We describe the conversion process, and give an error analysis of it. We compare accuracy results obtained by a Cartesianbased unequallysampled FFT method to ours, both algorithms using a smallsupport interpolation and no precompensating, and show marked advantage to the use of the pseudoPolar initial grid.
The Computational Study of Vision
 Foundations of Cognitive Science
, 1988
"... Through vision, we derive a rich understanding... This article reviews some computational studies of vision, focusing on edge detection, binocular stereo, motion analysis, intermediate vision and object recognition. ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
Through vision, we derive a rich understanding... This article reviews some computational studies of vision, focusing on edge detection, binocular stereo, motion analysis, intermediate vision and object recognition.