Results 1  10
of
276
CoSaMP: Iterative signal recovery from incomplete and inaccurate samples
 California Institute of Technology, Pasadena
, 2008
"... Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery alg ..."
Abstract

Cited by 345 (6 self)
 Add to MetaCart
Abstract. Compressive sampling offers a new paradigm for acquiring signals that are compressible with respect to an orthonormal basis. The major algorithmic challenge in compressive sampling is to approximate a compressible signal from noisy samples. This paper describes a new iterative recovery algorithm called CoSaMP that delivers the same guarantees as the best optimizationbased approaches. Moreover, this algorithm offers rigorous bounds on computational cost and storage. It is likely to be extremely efficient for practical problems because it requires only matrix–vector multiplies with the sampling matrix. For compressible signals, the running time is just O(N log 2 N), where N is the length of the signal. 1.
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinato ..."
Abstract

Cited by 202 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Bayesian Compressive Sensing
, 2007
"... The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing ..."
Abstract

Cited by 132 (15 self)
 Add to MetaCart
The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned Ndimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying Ndimensional signal. The number of required compressivesensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying Ndimensional signal, and g a vector of compressivesensing measurements, then one may approximate f accurately by utilizing knowledge of the (underdetermined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressivesensing measurements g. The proposed framework has the following properties: (i) in addition to estimating the underlying signal f, “error bars ” are also estimated, these giving a measure of confidence in the inverted signal; (ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient
Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit, submitted
, 2007
"... Abstract. This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has ..."
Abstract

Cited by 102 (10 self)
 Add to MetaCart
Abstract. This paper seeks to bridge the two major algorithmic approaches to sparse signal recovery from an incomplete set of linear measurements – L1minimization methods and iterative methods (Matching Pursuits). We find a simple regularized version of Orthogonal Matching Pursuit (ROMP) which has advantages of both approaches: the speed and transparency of OMP and the strong uniform guarantees of L1minimization. Our algorithm ROMP reconstructs a sparse signal in a number of iterations linear in the sparsity, and the reconstruction is exact provided the linear measurements satisfy the Uniform Uncertainty Principle. 1.
Compressed Sensing and Redundant Dictionaries
"... This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry con ..."
Abstract

Cited by 76 (12 self)
 Add to MetaCart
This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry constants. Thus, signals that are sparse with respect to the dictionary can be recovered via Basis Pursuit from a small number of random measurements. Further, thresholding is investigated as recovery algorithm for compressed sensing and conditions are provided that guarantee reconstruction with high probability. The different schemes are compared by numerical experiments.
Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals
, 2009
"... Wideband analog signals push contemporary analogtodigital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, alt ..."
Abstract

Cited by 69 (15 self)
 Add to MetaCart
Wideband analog signals push contemporary analogtodigital conversion systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the bandlimit, although the locations of the frequencies may not be known a priori. For this type of sparse signal, other sampling strategies are possible. This paper describes a new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components. Let K denote the total number of frequencies in the signal, and let W denote its bandlimit in Hz. Simulations suggest that the random demodulator requires just O(K log(W/K)) samples per second to stably reconstruct the signal. This sampling rate is exponentially lower than the Nyquist rate of W Hz. In contrast with Nyquist sampling, one must use nonlinear methods, such as convex programming, to recover the signal from the samples taken by the random demodulator. This paper provides a detailed theoretical analysis of the system’s performance that supports the empirical observations.
One sketch for all: Fast algorithms for compressed sensing
 In Proc. 39th ACM Symp. Theory of Computing
, 2007
"... Compressed Sensing is a new paradigm for acquiring the compressible signals that arise in many applications. These signals can be approximated using an amount of information much smaller than the nominal dimension of the signal. Traditional approaches acquire the entire signal and process it to extr ..."
Abstract

Cited by 63 (14 self)
 Add to MetaCart
Compressed Sensing is a new paradigm for acquiring the compressible signals that arise in many applications. These signals can be approximated using an amount of information much smaller than the nominal dimension of the signal. Traditional approaches acquire the entire signal and process it to extract the information. The new approach acquires a small number of nonadaptive linear measurements of the signal and uses sophisticated algorithms to determine its information content. Emerging technologies can compute these general linear measurements of a signal at unit cost per measurement. This paper exhibits a randomized measurement ensemble and a signal reconstruction algorithm that satisfy four requirements: 1. The measurement ensemble succeeds for all signals, with high probability over the random choices in its construction. 2. The number of measurements of the signal is optimal, except for a factor polylogarithmic in the signal length. 3. The running time of the algorithm is polynomial in the amount of information in the signal and polylogarithmic in the signal length. 4. The recovery algorithm offers the strongest possible type of error guarantee. Moreover, it is a fully polynomial approximation scheme with respect to this type of error bound. Emerging applications demand this level of performance. Yet no other algorithm in the literature simultaneously achieves all four of these desiderata.
Computational methods for sparse solution of linear inverse problems
, 2009
"... The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, ..."
Abstract

Cited by 60 (0 self)
 Add to MetaCart
The goal of sparse approximation problems is to represent a target signal approximately as a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a wealth of applications.
Compressive Sensing and Structured Random Matrices
 RADON SERIES COMP. APPL. MATH XX, 1–95 © DE GRUYTER 20YY
"... These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to ..."
Abstract

Cited by 59 (13 self)
 Add to MetaCart
These notes give a mathematical introduction to compressive sensing focusing on recovery using ℓ1minimization and structured random matrices. An emphasis is put on techniques for proving probabilistic estimates for condition numbers of structured random matrices. Estimates of this type are key to providing conditions that ensure exact or approximate recovery of sparse vectors using ℓ1minimization.
Learning with Structured Sparsity
"... This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set, this concept generalizes the group sparsity idea. A gener ..."
Abstract

Cited by 58 (5 self)
 Add to MetaCart
This paper investigates a new learning formulation called structured sparsity, which is a natural extension of the standard sparsity concept in statistical learning and compressive sensing. By allowing arbitrary structures on the feature set, this concept generalizes the group sparsity idea. A general theory is developed for learning with structured sparsity, based on the notion of coding complexity associated with the structure. Moreover, a structured greedy algorithm is proposed to efficiently solve the structured sparsity problem. Experiments demonstrate the advantage of structured sparsity over standard sparsity. 1.