Results 1  10
of
146
Image denoising using a scale mixture of Gaussians in the wavelet domain
 IEEE Trans Image Processing
, 2003
"... Abstract—We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussi ..."
Abstract

Cited by 473 (17 self)
 Add to MetaCart
(Show Context)
Abstract—We describe a method for removing noise from digital images, based on a statistical model of the coefficients of an overcomplete multiscale oriented basis. Neighborhoods of coefficients at adjacent positions and scales are modeled as the product of two independent random variables: a Gaussian vector and a hidden positive scalar multiplier. The latter modulates the local variance of the coefficients in the neighborhood, and is thus able to account for the empirically observed correlation between the coefficient amplitudes. Under this model, the Bayesian least squares estimate of each coefficient reduces to a weighted average of the local linear estimates over all possible values of the hidden multiplier variable. We demonstrate through simulations with images contaminated by additive white Gaussian noise that the performance of this method substantially surpasses that of previously published methods, both visually and in terms of mean squared error.
The Contourlet Transform: An Efficient Directional Multiresolution Image Representation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
"... The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure t ..."
Abstract

Cited by 438 (20 self)
 Add to MetaCart
The limitations of commonly used separable extensions of onedimensional transforms, such as the Fourier and wavelet transforms, in capturing the geometry of image edges are well known. In this paper, we pursue a “true” twodimensional transform that can capture the intrinsic geometrical structure that is key in visual information. The main challenge in exploring geometry in images comes from the discrete nature of the data. Thus, unlike other approaches, such as curvelets, that first develop a transform in the continuous domain and then discretize for sampled data, our approach starts with a discretedomain construction and then studies its convergence to an expansion in the continuous domain. Specifically, we construct a discretedomain multiresolution and multidirection expansion using nonseparable filter banks, in much the same way that wavelets were derived from filter banks. This construction results in a flexible multiresolution, local, and directional image expansion using contour segments, and thus it is named the contourlet transform. The discrete contourlet transform has a fast iterated filter bank algorithm that requires an order N operations for Npixel images. Furthermore, we establish a precise link between the developed filter bank and the associated continuousdomain contourlet expansion via a directional multiresolution analysis framework. We show that with parabolic scaling and sufficient directional vanishing moments, contourlets achieve the optimal approximation rate for piecewise smooth functions with discontinuities along twice continuously differentiable curves. Finally, we show some numerical experiments demonstrating the potential of contourlets in several image processing applications.
New tight frames of curvelets and optimal representations of objects with piecewise C² singularities
 COMM. ON PURE AND APPL. MATH
, 2002
"... This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshap ..."
Abstract

Cited by 365 (18 self)
 Add to MetaCart
(Show Context)
This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshaped elements at fine scales. These elements have many useful geometric multiscale features that set them apart from classical multiscale representations such as wavelets. For instance, curvelets obey a parabolic scaling relation which says that at scale 2−j, each element has an envelope which is aligned along a ‘ridge ’ of length 2−j/2 and width 2−j. We prove that curvelets provide an essentially optimal representation of typical objects f which are C2 except for discontinuities along C2 curves. Such representations are nearly as sparse as if f were not singular and turn out to be far more sparse than the wavelet decomposition of the object. For instance, the nterm partial reconstruction f C n obtained by selecting the n largest terms in the curvelet series obeys ‖f − f C n ‖ 2 L2 ≤ C · n−2 · (log n) 3, n → ∞. This rate of convergence holds uniformly over a class of functions which are C 2 except for discontinuities along C 2 curves and is essentially optimal. In comparison, the squared error of nterm wavelet approximations only converges as n −1 as n → ∞, which is considerably worst than the optimal behavior.
The curvelet transform for image denoising
 IEEE TRANS. IMAGE PROCESS
, 2002
"... We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A cen ..."
Abstract

Cited by 363 (40 self)
 Add to MetaCart
We describe approximate digital implementations of two new mathematical transforms, namely, the ridgelet transform [2] and the curvelet transform [6], [5]. Our implementations offer exact reconstruction, stability against perturbations, ease of implementation, and low computational complexity. A central tool is Fourierdomain computation of an approximate digital Radon transform. We introduce a very simple interpolation in Fourier space which takes Cartesian samples and yields samples on a rectopolar grid, which is a pseudopolar sampling set based on a concentric squares geometry. Despite the crudeness of our interpolation, the visual performance is surprisingly good. Our ridgelet transform applies to the Radon transform a special overcomplete wavelet pyramid whose wavelets have compact support in the frequency domain. Our curvelet transform uses our ridgelet transform as a component step, and implements curvelet subbands using a filter bank of à trous wavelet filters. Our philosophy throughout is that transforms should be overcomplete, rather than critically sampled. We apply these digital transforms to the denoising of some standard images embedded in white noise. In the tests reported here, simple thresholding of the curvelet coefficients is very competitive with “state of the art ” techniques based on wavelets, including thresholding of decimated or undecimated wavelet transforms and also including treebased Bayesian posterior mean methods. Moreover, the curvelet reconstructions exhibit higher perceptual quality than waveletbased reconstructions, offering visually sharper images and, in particular, higher quality recovery of edges and of faint linear and curvilinear features. Existing theory for curvelet and ridgelet transforms suggests that these new approaches can outperform wavelet methods in certain image reconstruction problems. The empirical results reported here are in encouraging agreement.
Fast Discrete Curvelet Transforms
, 2005
"... This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequallyspaced fast Fourier transforms (USFFT) while the second is based on the wrap ..."
Abstract

Cited by 157 (10 self)
 Add to MetaCart
(Show Context)
This paper describes two digital implementations of a new mathematical transform, namely, the second generation curvelet transform [12, 10] in two and three dimensions. The first digital transformation is based on unequallyspaced fast Fourier transforms (USFFT) while the second is based on the wrapping of specially selected Fourier samples. The two implementations essentially differ by the choice of spatial grid used to translate curvelets at each scale and angle. Both digital transformations return a table of digital curvelet coefficients indexed by a scale parameter, an orientation parameter, and a spatial location parameter. And both implementations are fast in the sense that they run in O(n 2 log n) flops for n by n Cartesian arrays; in addition, they are also invertible, with rapid inversion algorithms of about the same complexity. Our digital transformations improve upon earlier implementations—based upon the first generation of curvelets—in the sense that they are conceptually simpler, faster and far less redundant. The software CurveLab, which implements both transforms presented in this paper, is available at
A review of curvelets and recent applications
 IEEE Signal Processing Magazine
, 2009
"... Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing ..."
Abstract

Cited by 126 (10 self)
 Add to MetaCart
Multiresolution methods are deeply related to image processing, biological and computer vision, scientific computing, etc. The curvelet transform is a multiscale directional transform which allows an almost optimal nonadaptive sparse representation of objects with edges. It has generated increasing interest in the community of applied mathematics and signal processing over the past years. In this paper, we present a review on the curvelet transform, including its history beginning from wavelets, its logical relationship to other multiresolution multidirectional methods like contourlets and shearlets, its basic theory and discrete algorithm. Further, we consider recent applications in image/video processing, seismic exploration, fluid mechanics, simulation of partial different equations, and compressed sensing.
Analysis versus synthesis in signal priors
, 2005
"... The concept of prior probability for signals plays a key role in the successful solution of many inverse problems. Much of the literature on this topic can be divided between analysisbased and synthesisbased priors. Analysisbased priors assign probability to a signal through various forward measu ..."
Abstract

Cited by 124 (16 self)
 Add to MetaCart
The concept of prior probability for signals plays a key role in the successful solution of many inverse problems. Much of the literature on this topic can be divided between analysisbased and synthesisbased priors. Analysisbased priors assign probability to a signal through various forward measurements of it, while synthesisbased priors seek a reconstruction of the signal as a combination of atom signals. In this paper we describe these two prior classes, focusing on the distinction between them. We show that although when reducing to the complete and undercomplete formulations the two become equivalent, in their more interesting overcomplete formulation the two types depart. Focusing on the ℓ1 denoising case, we present several ways of comparing the two types of priors, establishing the existence of an unbridgeable gap between them. 1.
Nonuniform Fast Fourier Transforms Using MinMax Interpolation
 IEEE Trans. Signal Process
, 2003
"... The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several pap ..."
Abstract

Cited by 107 (16 self)
 Add to MetaCart
The FFT is used widely in signal processing for efficient computation of the Fourier transform (FT) of finitelength signals over a set of uniformlyspaced frequency locations. However, in many applications, one requires nonuniform sampling in the frequency domain, i.e.,a nonuniform FT . Several papers have described fast approximations for the nonuniform FT based on interpolating an oversampled FFT. This paper presents an interpolation method for the nonuniform FT that is optimal in the minmax sense of minimizing the worstcase approximation error over all signals of unit norm. The proposed method easily generalizes to multidimensional signals. Numerical results show that the minmax approach provides substantially lower approximation errors than conventional interpolation methods. The minmax criterion is also useful for optimizing the parameters of interpolation kernels such as the KaiserBessel function.
Optimally sparse multidimensional representations using shearlets, preprint
, 2006
"... Abstract. Recent advances in applied mathematics and signal processing have shown that, in order to obtain sparse representations of multidimensional functions and signals, one has to use representation elements distributed not only at various scales and locations – as in classical wavelet theory – ..."
Abstract

Cited by 101 (48 self)
 Add to MetaCart
(Show Context)
Abstract. Recent advances in applied mathematics and signal processing have shown that, in order to obtain sparse representations of multidimensional functions and signals, one has to use representation elements distributed not only at various scales and locations – as in classical wavelet theory – but also at various directions. In this paper, we show that we obtain a construction having exactly these properties by using the framework of affine systems. The representation elements that we obtain are generated by translations, dilations, and shear transformations of a single mother function, and are called shearlets. The shearlets provide optimally sparse representations for 2D functions that are smooth away from discontinuities along curves. Another benefit of this approach is that, thanks to their mathematical structure, these systems provide a Multiresolution analysis similar to the one associated with classical wavelets, which is very useful for the development of fast algorithmic implementations.
Dictionaries for Sparse Representation Modeling
"... Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a p ..."
Abstract

Cited by 101 (3 self)
 Add to MetaCart
Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a proper dictionary can be done using one of two ways: (i) building a sparsifying dictionary based on a mathematical model of the data, or (ii) learning a dictionary to perform best on a training set. In this paper we describe the evolution of these two paradigms. As manifestations of the first approach, we cover topics such as wavelets, wavelet packets, contourlets, and curvelets, all aiming to exploit 1D and 2D mathematical models for constructing effective dictionaries for signals and images. Dictionary learning takes a different route, attaching the dictionary to a set of examples it is supposed to serve. From the seminal work of Field and Olshausen, through the MOD, the KSVD, the Generalized PCA and others, this paper surveys the various options such training has to offer, up to the most recent contributions and structures.