Results 1  10
of
384
From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images
, 2007
"... A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinato ..."
Abstract

Cited by 202 (31 self)
 Add to MetaCart
A fullrank matrix A ∈ IR n×m with n < m generates an underdetermined system of linear equations Ax = b having infinitely many solutions. Suppose we seek the sparsest solution, i.e., the one with the fewest nonzero entries: can it ever be unique? If so, when? As optimization of sparsity is combinatorial in nature, are there efficient methods for finding the sparsest solution? These questions have been answered positively and constructively in recent years, exposing a wide variety of surprising phenomena; in particular, the existence of easilyverifiable conditions under which optimallysparse solutions can be found by concrete, effective computational methods. Such theoretical results inspire a bold perspective on some important practical problems in signal and image processing. Several wellknown signal and image processing problems can be cast as demanding solutions of undetermined systems of equations. Such problems have previously seemed, to many, intractable. There is considerable evidence that these problems often have sparse solutions. Hence, advances in finding sparse solutions to underdetermined systems energizes research on such signal and image processing problems – to striking effect. In this paper we review the theoretical results on sparse solutions of linear systems, empirical
Sparse representation for color image restoration
 the IEEE Trans. on Image Processing
, 2007
"... Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted ..."
Abstract

Cited by 106 (27 self)
 Add to MetaCart
Sparse representations of signals have drawn considerable interest in recent years. The assumption that natural signals, such as images, admit a sparse decomposition over a redundant dictionary leads to efficient algorithms for handling such sources of data. In particular, the design of well adapted dictionaries for images has been a major challenge. The KSVD has been recently proposed for this task [1], and shown to perform very well for various grayscale image processing tasks. In this paper we address the problem of learning dictionaries for color images and extend the KSVDbased grayscale image denoising algorithm that appears in [2]. This work puts forward ways for handling nonhomogeneous noise and missing information, paving the way to stateoftheart results in applications such as color image denoising, demosaicing, and inpainting, as demonstrated in this paper. EDICS Category: COLCOLR (Color processing) I.
Online learning for matrix factorization and sparse coding
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set, adapting it t ..."
Abstract

Cited by 97 (18 self)
 Add to MetaCart
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set, adapting it to specific data. Variations of this problem include dictionary learning in signal processing, nonnegative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large datasets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to stateoftheart performance in terms of speed and optimization for both small and large datasets.
Compressed Sensing and Redundant Dictionaries
"... This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry con ..."
Abstract

Cited by 76 (12 self)
 Add to MetaCart
This article extends the concept of compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic dictionary, has small restricted isometry constants. Thus, signals that are sparse with respect to the dictionary can be recovered via Basis Pursuit from a small number of random measurements. Further, thresholding is investigated as recovery algorithm for compressed sensing and conditions are provided that guarantee reconstruction with high probability. The different schemes are compared by numerical experiments.
Image superresolution as sparse representation of raw image patches. CVPR
, 2008
"... This paper addresses the problem of generating a superresolution (SR) image from a single lowresolution input image. We approach this problem from the perspective of compressed sensing. The lowresolution image is viewed as downsampled version of a highresolution image, whose patches are assumed t ..."
Abstract

Cited by 58 (16 self)
 Add to MetaCart
This paper addresses the problem of generating a superresolution (SR) image from a single lowresolution input image. We approach this problem from the perspective of compressed sensing. The lowresolution image is viewed as downsampled version of a highresolution image, whose patches are assumed to have a sparse representation with respect to an overcomplete dictionary of prototype signalatoms. The principle of compressed sensing ensures that under mild conditions, the sparse representation can be correctly recovered from the downsampled signal. We will demonstrate the effectiveness of sparsity as a prior for regularizing the otherwise illposed superresolution problem. We further show that a small set of randomly chosen raw patches from training images of similar statistical nature to the input image generally serve as a good dictionary, in the sense that the computed representation is sparse and the recovered highresolution image is competitive or even superior in quality to images produced by other SR methods. 1.
1 Image SuperResolution via Sparse Representation
"... Abstract—This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be wellrepresented as a sparse linear combination of elements from an appropriately chosen overcomplete dictionary. Inspir ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
Abstract—This paper presents a new approach to singleimage superresolution, based on sparse signal representation. Research on image statistics suggests that image patches can be wellrepresented as a sparse linear combination of elements from an appropriately chosen overcomplete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the lowresolution input, and then use the coefficients of this representation to generate the highresolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low resolution and high resolution image patches, we can enforce the similarity of sparse representations between the low resolution and high resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low resolution image patch can be applied with the high resolution image patch dictionary to generate a high resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches which simply sample a large amount of image patch pairs, reducing the computation cost substantially. The effectiveness of such a sparsity prior is demonstrated for general image superresolution and also for the special case of face hallucination. In both cases, our algorithm can generate highresolution images that are competitive or even superior in quality to images produced by other similar SR methods, but with faster processing speed. I.
Learning multiscale sparse representations for image and video restoration
, 2007
"... Abstract. This paper presents a framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries. A singlescale KSVD algorithm was introduced in [1], formulating sparse dictionary learning for grayscale image representation as an optimization proble ..."
Abstract

Cited by 51 (17 self)
 Add to MetaCart
Abstract. This paper presents a framework for learning multiscale sparse representations of color images and video with overcomplete dictionaries. A singlescale KSVD algorithm was introduced in [1], formulating sparse dictionary learning for grayscale image representation as an optimization problem, efficiently solved via Orthogonal Matching Pursuit (OMP) and Singular Value Decomposition (SVD). Following this work, we propose a multiscale learned representation, obtained by using an efficient quadtree decomposition of the learned dictionary, and overlapping image patches. The proposed framework provides an alternative to predefined dictionaries such as wavelets, and shown to lead to stateoftheart results in a number of image and video enhancement and restoration applications. This paper describes the proposed framework, and accompanies it by numerous examples demonstrating its strength. Key words. Image and video processing, sparsity, dictionary, multiscale representation, denoising, inpainting, interpolation, learning. AMS subject classifications. 49M27, 62H35
Image denoising via learned dictionaries and sparse representation
 In CVPR
, 2006
"... We address the image denoising problem, where zeromean white and homogeneous Gaussian additive noise should be removed from a given image. The approach taken is based on sparse and redundant representations over a trained dictionary. The proposed algorithm denoises the image, while simultaneously tr ..."
Abstract

Cited by 47 (6 self)
 Add to MetaCart
We address the image denoising problem, where zeromean white and homogeneous Gaussian additive noise should be removed from a given image. The approach taken is based on sparse and redundant representations over a trained dictionary. The proposed algorithm denoises the image, while simultaneously trainining a dictionary on its (corrupted) content using the KSVD algorithm. As the dictionary training algorithm is limited in handling small image patches, we extend its deployment to arbitrary image sizes by defining a global image prior that forces sparsity over patches in every location in the image. We show how such Bayesian treatment leads to a simple and effective denoising algorithm, with stateoftheart performance, equivalent and sometimes surpassing recently published leading alternative denoising methods. 1.
Dictionaries for Sparse Representation Modeling
"... Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a p ..."
Abstract

Cited by 44 (3 self)
 Add to MetaCart
Sparse and redundant representation modeling of data assumes an ability to describe signals as linear combinations of a few atoms from a prespecified dictionary. As such, the choice of the dictionary that sparsifies the signals is crucial for the success of this model. In general, the choice of a proper dictionary can be done using one of two ways: (i) building a sparsifying dictionary based on a mathematical model of the data, or (ii) learning a dictionary to perform best on a training set. In this paper we describe the evolution of these two paradigms. As manifestations of the first approach, we cover topics such as wavelets, wavelet packets, contourlets, and curvelets, all aiming to exploit 1D and 2D mathematical models for constructing effective dictionaries for signals and images. Dictionary learning takes a different route, attaching the dictionary to a set of examples it is supposed to serve. From the seminal work of Field and Olshausen, through the MOD, the KSVD, the Generalized PCA and others, this paper surveys the various options such training has to offer, up to the most recent contributions and structures.