Results 1  10
of
148
Compressed sensing
 IEEE Trans. Inform. Theory
"... Abstract—Suppose is an unknown vector in (a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measureme ..."
Abstract

Cited by 1793 (18 self)
 Add to MetaCart
Abstract—Suppose is an unknown vector in (a digital image or signal); we plan to measure general linear functionals of and then reconstruct. If is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements can be dramatically smaller than the size. Thus, certain natural classes of images with pixels need only = ( 1 4 log 5 2 ()) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual pixel samples. More specifically, suppose has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)—so the coefficients belong to an ball for 0 1. The most important coefficients in that expansion allow reconstruction with 2 error ( 1 2 1
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 861 (17 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
New tight frames of curvelets and optimal representations of objects with piecewise C² singularities
 COMM. ON PURE AND APPL. MATH
, 2002
"... This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshap ..."
Abstract

Cited by 259 (17 self)
 Add to MetaCart
This paper introduces new tight frames of curvelets to address the problem of finding optimally sparse representations of objects with discontinuities along C2 edges. Conceptually, the curvelet transform is a multiscale pyramid with many directions and positions at each length scale, and needleshaped elements at fine scales. These elements have many useful geometric multiscale features that set them apart from classical multiscale representations such as wavelets. For instance, curvelets obey a parabolic scaling relation which says that at scale 2−j, each element has an envelope which is aligned along a ‘ridge ’ of length 2−j/2 and width 2−j. We prove that curvelets provide an essentially optimal representation of typical objects f which are C2 except for discontinuities along C2 curves. Such representations are nearly as sparse as if f were not singular and turn out to be far more sparse than the wavelet decomposition of the object. For instance, the nterm partial reconstruction f C n obtained by selecting the n largest terms in the curvelet series obeys ‖f − f C n ‖ 2 L2 ≤ C · n−2 · (log n) 3, n → ∞. This rate of convergence holds uniformly over a class of functions which are C 2 except for discontinuities along C 2 curves and is essentially optimal. In comparison, the squared error of nterm wavelet approximations only converges as n −1 as n → ∞, which is considerably worst than the optimal behavior.
Quantized frame expansions with erasures
 Journal of Appl. and Comput. Harmonic Analysis
, 2001
"... ..."
The mathematics of learning: Dealing with data
 Notices of the American Mathematical Society
, 2003
"... Draft for the Notices of the AMS Learning is key to developing systems tailored to a broad range of data analysis and information extraction tasks. We outline the mathematical foundations of learning theory and describe a key algorithm of it. 1 ..."
Abstract

Cited by 109 (15 self)
 Add to MetaCart
Draft for the Notices of the AMS Learning is key to developing systems tailored to a broad range of data analysis and information extraction tasks. We outline the mathematical foundations of learning theory and describe a key algorithm of it. 1
Highdimensional data analysis: The curses and blessings of dimensionality. AideMemoire of a Lecture at
 AMS Conference on Math Challenges of the 21st Century
, 2000
"... The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, an ..."
Abstract

Cited by 95 (0 self)
 Add to MetaCart
The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, and DNA Microarrays are just a few of the betterknown sources, feeding data in torrential streams into scientific and business databases worldwide. In traditional statistical data analysis, we think of observations of instances of particular phenomena (e.g. instance ↔ human being), these observations being a vector of values we measured on several variables (e.g. blood pressure, weight, height,...). In traditional statistical methodology, we assumed many observations and a few, wellchosen variables. The trend today is towards more observations but even more so, to radically larger numbers of variables – voracious, automatic, systematic collection of hyperinformative detail about each observed instance. We are seeing examples where the observations gathered on individual instances are curves, or spectra, or images, or
Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets StrangFix
 IEEE Trans. on Signal Processing
, 2007
"... Abstract—Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, nonuniform splines or piecewise polynomials, and call the number of degrees of freedom per unit of time the rate of innovation. Cl ..."
Abstract

Cited by 92 (28 self)
 Add to MetaCart
Abstract—Consider the problem of sampling signals which are not bandlimited, but still have a finite number of degrees of freedom per unit of time, such as, for example, nonuniform splines or piecewise polynomials, and call the number of degrees of freedom per unit of time the rate of innovation. Classical sampling theory does not enable a perfect reconstruction of such signals since they are not bandlimited. Recently, it was shown that, by using an adequate sampling kernel and a sampling rate greater or equal to the rate of innovation, it is possible to reconstruct such signals uniquely [34]. These sampling schemes, however, use kernels with infinite support, and this leads to complex and potentially unstable reconstruction algorithms. In this paper, we show that many signals with a finite rate of innovation can be sampled and perfectly reconstructed using physically realizable kernels of compact support and a local reconstruction algorithm. The class of kernels that we can use is very rich and includes functions satisfying Strang–Fix conditions, exponential splines and functions with rational Fourier transform. This last class of kernels is quite general and includes, for instance, any linear electric circuit. We, thus, show with an example how to estimate a signal of finite rate of innovation at the output of an circuit. The case of noisy measurements is also analyzed, and we present a novel algorithm that reduces the effect of noise by oversampling. Index Terms—Analogtodigital conversion, annihilating filter method, multiresolution approximations, sampling methods, splines, wavelets. I.
A Stochastic Grammar of Images
 Foundations and Trends in Computer Graphics and Vision
, 2006
"... This exploratory paper quests for a stochastic and context sensitive grammar of images. The grammar should achieve the following four objectives and thus serves as a unified framework of representation, learning, and recognition for a large number of object categories. (i) The grammar represents bot ..."
Abstract

Cited by 84 (20 self)
 Add to MetaCart
This exploratory paper quests for a stochastic and context sensitive grammar of images. The grammar should achieve the following four objectives and thus serves as a unified framework of representation, learning, and recognition for a large number of object categories. (i) The grammar represents both the hierarchical decompositions from scenes, to objects, parts, primitives and pixels by terminal and nonterminal nodes and the contexts for spatial and functional relations by horizontal links between the nodes. It formulates each object category as the set of all possible valid configurations produced by the grammar. (ii) The grammar is embodied in a simple And–Or graph representation where each Ornode points to alternative subconfigurations and an Andnode is decomposed into a number of components. This representation supports recursive topdown/bottomup procedures for image parsing under the Bayesian framework and make it convenient to scale
Regularization of Wavelets Approximations
, 1999
"... this paper, weintroduce nonlinear regularized wavelet estimators for estimating nonparametric regression functions when sampling points are not uniformly spaced. The approach can apply readily to many other statistical contexts. Various new penalty functions are proposed. The hardthresholding and s ..."
Abstract

Cited by 81 (7 self)
 Add to MetaCart
this paper, weintroduce nonlinear regularized wavelet estimators for estimating nonparametric regression functions when sampling points are not uniformly spaced. The approach can apply readily to many other statistical contexts. Various new penalty functions are proposed. The hardthresholding and softthresholding estimators of Donoho and Johnstone (1994) are specic members of nonlinear regularized wavelet estimators. They correspond to the lower and upper bound of a class of the penalized leastsquares estimators. Necessary conditions for penalty functions are given for regularized estimators to possess thresholding properties. Oracle inequalities and universal thresholding parameters are obtained for a large class of penalty functions. The sampling properties of nonlinear regularized wavelet estimators are established, and are shown to be adaptively minimax. To eciently solve penalized leastsquares problems, Nonlinear Regularized Sobolev Interpolators (NRSI) are proposed as initial estimators, which are shown to have good sampling properties. The NRSI is further ameliorated by Regularized OneStep Estimators (ROSE), which are the onestep estimators of the penalized leastsquares problems using the NRSI as initial estimators. Two other approaches, the graduated nonconvexity algorithm and wavelet networks, are also introduced to handle penalized leastsquares problems. The newly introduced approaches are also illustrated by a few numerical examples. ####### ########## ## ########## ########### ## ############# ## ####### ######################### ##### ######## ##### ## ####### ######## ### ## ########## ########## ## ########### ########## ## ########### ### ######## ## ########## ### ### ####### ########## ## #### ##### ##### ########### ######### ######### ## ###...
The Finite Ridgelet Transform for Image Representation
 IEEE Transactions on Image Processing
, 2003
"... The ridgelet transform [6] was introduced as a sparse expansion for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we propose an orthonormal version of the ridgelet transform for discrete and finite size images. Our construction uses the finite ..."
Abstract

Cited by 76 (2 self)
 Add to MetaCart
The ridgelet transform [6] was introduced as a sparse expansion for functions on continuous spaces that are smooth away from discontinuities along lines. In this paper, we propose an orthonormal version of the ridgelet transform for discrete and finite size images. Our construction uses the finite Radon transform (FRAT) [11], [20] as a building block. To overcome the periodization effect of a finite transform, we introduce a novel ordering of the FRAT coefficients. We also analyze the FRAT as a frame operator and derive the exact frame bounds. The resulting finite ridgelet transform (FRIT) is invertible, nonredundant and computed via fast algorithms. Furthermore, this construction leads to a family of directional and orthonormal bases for images. Numerical results show that the FRIT is more effective than the wavelet transform in approximating and denoising images with straight edges.