Results 1 
5 of
5
Spaceefficient planar convex hull algorithms
 Proc. Latin American Theoretical Informatics
, 2002
"... A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set. ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
A spaceefficient algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. We describe four spaceefficient algorithms for computing the convex hull of a planar point set.
Sorting and/by Merging Finger Trees
 In Algorithms and Computation: Third International Symposium, ISAAC ’92
, 1992
"... : We describe a sorting algorithm that is optimally adaptive with respect to several important measures of presortedness. In particular, the algorithm requires O(n+k log k) time on nsequences X that have a longest ascending subsequence of length n \Gamma k and for which Rem(X) = k; O(n log(k=n)) ti ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
: We describe a sorting algorithm that is optimally adaptive with respect to several important measures of presortedness. In particular, the algorithm requires O(n+k log k) time on nsequences X that have a longest ascending subsequence of length n \Gamma k and for which Rem(X) = k; O(n log(k=n)) time on sequences with k inversions; and O(n log k) time on sequences that can be decomposed into k monotone shuffles. The algorithm makes use of an adaptive merging operation that can be implemented using finger search trees. 1 Introduction An adaptive algorithm is one which requires fewer resources to solve `easy' problem instances than it does to solve `hard'. For sorting an adaptive algorithm should run in O(n) time if presented with a sorted nsequence, and in O(n log n) time for all n sequences, with the time for any particular sequence depending upon the `nearness' of the sequence to being sorted. Mannila [7] established the notion of a measure of presortedness to quantify the disord...
Optimal inplace planar convex hull algorithms
 Proceedings of Latin American Theoretical Informatics (LATIN 2002), volume 2286 of Lecture Notes in Computer Science
, 2002
"... An inplace algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. In this paper we describe three inplace algorithms for computing the convex hull of a planar point set. All three algorithms are optima ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
An inplace algorithm is one in which the output is given in the same location as the input and only a small amount of additional memory is used by the algorithm. In this paper we describe three inplace algorithms for computing the convex hull of a planar point set. All three algorithms are optimal, some more so than others...
A.: Stable minimum storage merging by symmetric comparisons
 Algorithms  ESA 2004. Volume 3221 of Lecture Notes in Computer Science
, 2004
"... Abstract. We introduce a new stable minimum storage algorithm for merging that needs O(m log ( n + 1)) element comparisons, where m and m n are the sizes of the input sequences with m ≤ n. According to the lower bound for merging, our algorithm is asymptotically optimal regarding the number of compa ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. We introduce a new stable minimum storage algorithm for merging that needs O(m log ( n + 1)) element comparisons, where m and m n are the sizes of the input sequences with m ≤ n. According to the lower bound for merging, our algorithm is asymptotically optimal regarding the number of comparisons. The presented algorithm rearranges the elements to be merged by rotations, where the areas to be rotated are determined by a simple principle of symmetric comparisons. This style of minimum storage merging is novel and looks promising. Our algorithm has a short and transparent definition. Experimental work has shown that it is very efficient and so might be of high practical interest. 1
On optimal and efficient in place merging
 SOFSEM 2006. Volume 3831 of Lecture Notes in Computer Science
, 2006
"... Abstract. We introduce a new stable in place merging algorithm that needs O(m log ( n +1)) comparisons and O(m+n) assignments. According m to the lower bounds for merging our algorithm is asymptotically optimal regarding the number of comparisons as well as assignments. The stable algorithm is devel ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. We introduce a new stable in place merging algorithm that needs O(m log ( n +1)) comparisons and O(m+n) assignments. According m to the lower bounds for merging our algorithm is asymptotically optimal regarding the number of comparisons as well as assignments. The stable algorithm is developed in a modular style out of an unstable kernel for which we give a definition in pseudocode. The literature so far describes several similar algorithms but merely as sophisticated theoretical models without any reasoning about their practical value. We report specific benchmarks and show that our algorithm is for almost all input sequences faster than the efficient minimum storage algorithm by Dudzinski and Dydek. The proposed algorithm can be effectively used in practice. 1