Results 1 
4 of
4
A linear time algorithm for embedding graphs in an arbitrary surface
 SIAM J. Discrete Math
, 1999
"... Ljubljana, February 2, 2009A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded treewidth ..."
Abstract

Cited by 56 (10 self)
 Add to MetaCart
Ljubljana, February 2, 2009A simpler linear time algorithm for embedding graphs into an arbitrary surface and the genus of graphs of bounded treewidth
Embedding graphs containing K5subdivisions
 Ars Combinatoria
"... Given a nonplanar graph G with a subdivision of K5 as a subgraph, we can either transform the K5subdivision into a K3,3subdivision if it is possible, or else we obtain a partition of the vertices of G\K5 into equivalence classes. As a result, we can reduce a projective planarity or toroidality al ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Given a nonplanar graph G with a subdivision of K5 as a subgraph, we can either transform the K5subdivision into a K3,3subdivision if it is possible, or else we obtain a partition of the vertices of G\K5 into equivalence classes. As a result, we can reduce a projective planarity or toroidality algorithm to a small constant number of simple planarity checks [6] or to a K3,3subdivision in the graph G. It significantly simplifies algorithms presented in [7], [10] and [12]. We then need to consider only the embeddings on the given surface of a K3,3subdivision, which are much less numerous than those of K5. 1.
Universal obstructions for embedding extension problems
"... Let K be an induced nonseparating subgraph of a graph G, andletB be the bridge of K in G. Obstructions for extending a given 2cell embedding of K to an embedding of G in the same surface are considered. It is shown that it is possible to find a nice obstruction which means that it has bounded bran ..."
Abstract

Cited by 7 (6 self)
 Add to MetaCart
Let K be an induced nonseparating subgraph of a graph G, andletB be the bridge of K in G. Obstructions for extending a given 2cell embedding of K to an embedding of G in the same surface are considered. It is shown that it is possible to find a nice obstruction which means that it has bounded branch size up to a bounded number of “almost disjoint ” millipedes. Moreover, B contains a nice subgraph ˜ B with the following properties. If K is 2cell embedded in some surface and F is a face of K, then ˜ B admits exactly the same types of embeddings in F as B. A linear time algorithm to construct such a universal obstruction ˜ B is presented. At the same time, for every type of embeddings of ˜ B, an embedding of B ofthesametypeis determined.
Edge Partition of Toroidal Graphs into Forests in Linear Time
"... In this paper we give a linear algorithm to edge partition a toroidal graph, i.e., graph that can be embedded on the orientable surface of genus one without edge crossing, into three forests plus a set of at most three edges. For triangulated toroidal graphs, this algorithm gives a linear algorithm ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
In this paper we give a linear algorithm to edge partition a toroidal graph, i.e., graph that can be embedded on the orientable surface of genus one without edge crossing, into three forests plus a set of at most three edges. For triangulated toroidal graphs, this algorithm gives a linear algorithm for finding three edgedisjoint spanning trees. This is in a certain way an extension of the wellknown algorithm of Schnyder’s decomposition for planar graph.