Results 1  10
of
26
Full Abstraction for PCF
 INFORMATION AND COMPUTATION
, 1996
"... An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "historyfree" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable i ..."
Abstract

Cited by 205 (15 self)
 Add to MetaCart
An intensional model for the programming language PCF is described, in which the types of PCF are interpreted by games, and the terms by certain "historyfree" strategies. This model is shown to capture definability in PCF. More precisely, every compact strategy in the model is definable in a certain simple extension of PCF. We then introduce an intrinsic preorder on strategies, and show that it satisfies some remarkable properties, such that the intrinsic preorder on function types coincides with the pointwise preorder. We then obtain an orderextensional fully abstract model of PCF by quotienting the intensional model by the intrinsic preorder. This is the first syntaxindependent description of the fully abstract model for PCF. (Hyland and Ong have obtained very similar results by a somewhat different route, independently and at the same time.) We then consider the effective version of our model, and prove a Universality Theorem: every element of the effective extensional model is definable in PCF. Equivalently, every recursive strategy is definable up to observational equivalence.
Full Abstraction for PCF (Extended Abstract)
 THEORETICAL ASPECTS OF COMPUTER SOFTWARE. INTERNATIONAL SYMPOSIUM TACS'94, NUMBER 789 IN LECTURE NOTES IN COMPUTER SCIENCE
, 1994
"... The Full Abstraction Problem for PCF [23, 20, 7, 11] is one of the longeststanding problems in the semantics of programming languages. There is quite widespread agreement that it is one of the most difficult; there is much less agreement as to what exactly the problem is, or more particularly as ..."
Abstract

Cited by 68 (11 self)
 Add to MetaCart
The Full Abstraction Problem for PCF [23, 20, 7, 11] is one of the longeststanding problems in the semantics of programming languages. There is quite widespread agreement that it is one of the most difficult; there is much less agreement as to what exactly the problem is, or more particularly as to the precise criteria for a solution. The usual formulation is that one wants a "semantic characterization" of the fully abstract model (by which we mean the inequationally fully abstract orderextensional model, which Milner proved to be uniquely specified up to isomorphism by these properties [20]). The problem is to understand what should be meant by a "semantic characterization". Our view is that the essential content of the problem, what makes it important, is that it calls for a semantic characterization of sequential, functional computation at hig...
Observable Sequentiality and Full Abstraction
 In Proceedings of POPL ’92
, 1992
"... ion Robert Cartwright Matthias Felleisen Department of Computer Science Rice University Houston, TX 772511892 Abstract One of the major challenges in denotational semantics is the construction of fully abstract models for sequential programming languages. For the past fifteen years, research o ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
ion Robert Cartwright Matthias Felleisen Department of Computer Science Rice University Houston, TX 772511892 Abstract One of the major challenges in denotational semantics is the construction of fully abstract models for sequential programming languages. For the past fifteen years, research on this problem has focused on developing models for PCF, an idealized functional programming language based on the typed lambda calculus. Unlike most practical languages, PCF has no facilities for observing and exploiting the evaluation order of arguments in procedures. Since we believe that such facilities are crucial for understanding the nature of sequential computation, this paper focuses on a sequential extension of PCF (called SPCF) that includes two classes of control operators: error generators and escape handlers. These new control operators enable us to construct a fully abstract model for SPCF that interprets higher types as sets of errorsensitive functions instead of continuous...
Correspondence between Operational and Denotational Semantics
 Handbook of Logic in Computer Science
, 1995
"... This course introduces the operational and denotational semantics of PCF and examines the relationship between the two. Topics: Syntax and operational semantics of PCF, Activity Lemma, undefinability of parallel or; Context Lemma (first principles proof) and proof by logical relations Denotational ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
This course introduces the operational and denotational semantics of PCF and examines the relationship between the two. Topics: Syntax and operational semantics of PCF, Activity Lemma, undefinability of parallel or; Context Lemma (first principles proof) and proof by logical relations Denotational semantics of PCF induced by an interpretation; (standard) Scott model, adequacy, weak adequacy and its proof (by a computability predicate) Domain Theory up to SFP and Scott domains; non full abstraction of the standard model, definability of compact elements and full abstraction for PCFP (PCF + parallel or), properties of orderextensional (continuous) models of PCF, Milner's model and Mulmuley's construction (excluding proofs) Additional topics (time permitting): results on pure simplytyped lambda calculus, Friedman 's Completeness Theorem, minimal model, logical relations and definability, undecidability of lambda definability (excluding proof), dIdomains and stable functions Homepa...
Typed closure conversion preserves observational equivalence
, 2008
"... Languagebased security relies on the assumption that all potential attacks are bound by the rules of the language in question. When programs are compiled into a different language, this is true only if the translation process preserves observational equivalence. We investigate the problem of fully ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
Languagebased security relies on the assumption that all potential attacks are bound by the rules of the language in question. When programs are compiled into a different language, this is true only if the translation process preserves observational equivalence. We investigate the problem of fully abstract compilation, i.e., compilation that both preserves and reflects observational equivalence. In particular, we prove that typed closure conversion for the polymorphic λcalculus with existential and recursive types is fully abstract. Our proof uses operational techniques in the form of a stepindexed logical relation and construction of certain wrapper terms that “backtranslate ” from target values to source values. Although typed closure conversion has been assumed to be fully abstract, we are not aware of any previous result that actually proves this.
Relational Properties of Recursively Defined Domains
 In 8th Annual Symposium on Logic in Computer Science
, 1993
"... This paper describes a mixed induction/coinduction property of relations on recursively defined domains. We work within a general framework for relations on domains and for actions of type constructors on relations introduced by O'Hearn and Tennent [20], and draw upon Freyd's analysis [7] ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
This paper describes a mixed induction/coinduction property of relations on recursively defined domains. We work within a general framework for relations on domains and for actions of type constructors on relations introduced by O'Hearn and Tennent [20], and draw upon Freyd's analysis [7] of recursive types in terms of a simultaneous initiality/finality property. The utility of the mixed induction/coinduction property is demonstrated by deriving a number of families of proof principles from it. One instance of the relational framework yields a family of induction principles for admissible subsets of general recursively defined domains which extends the principle of structural induction for inductively defined sets. Another instance of the framework yields the coinduction principle studied by the author in [22], by which equalities between elements of recursively defined domains may be proved via `bisimulations'. 1 Introduction A characteristic feature of higherorder functional lan...
A Relational Account of CallbyValue Sequentiality
 IN: PROC. 12TH SYMP. LOGIC IN COMPUTER SCIENCE
, 1999
"... We construct a model for FPC, a purely functional, sequential, callbyvalue language. The model is built from partial continuous functions, in the style of Plotkin, further constrained to be uniform with respect to a class of logical relations. We prove that the model is fully abstract. ..."
Abstract

Cited by 13 (2 self)
 Add to MetaCart
We construct a model for FPC, a purely functional, sequential, callbyvalue language. The model is built from partial continuous functions, in the style of Plotkin, further constrained to be uniform with respect to a class of logical relations. We prove that the model is fully abstract.
Games and full abstraction for PCF: preliminary announcement
, 1993
"... The Full Abstraction Problem for PCF [14, 12, 4, 8] is one of the longeststanding problems in the semantics of programming languages. There is quite widespread agreement that it is one of the most difficult; there is much less agreement as to what exactly the problem is, or more particularly as to ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
The Full Abstraction Problem for PCF [14, 12, 4, 8] is one of the longeststanding problems in the semantics of programming languages. There is quite widespread agreement that it is one of the most difficult; there is much less agreement as to what exactly the problem is, or more particularly as to the precise criteria for a solution. The usual formulation is that one wants a &quot;semantic characterization &quot; of the fully abstract model (by which we mean the inequationally fully abstract orderextensional model, which Milner proved to be uniquely specified up to isomorphism by these properties [12]). The problem is to understand what should be meant by a &quot;semantic characterization&quot;. Our view is that the essential content of the problem, what makes it important, is that it calls for a semantic characterization of sequential, functional computation at higher types. The phrase &quot;sequential functional computation &quot; deserves careful consideration. On the one hand, sequentiality refers to a computational process extended over time, not a mere function; on the other hand, we want to capture just those sequential computations in which the different parts or &quot;modules &quot; interact with each other in a purely functional fashion.
A stable programming language
 I&C
"... It is wellknown that stable models (as dIdomains, qualitative domains and coherence spaces) are not fully abstract for the languagePCF. This fact is related to the existence of stable parallel functions and of stable functions that are not monotone with respect to the extensional order, which cann ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
It is wellknown that stable models (as dIdomains, qualitative domains and coherence spaces) are not fully abstract for the languagePCF. This fact is related to the existence of stable parallel functions and of stable functions that are not monotone with respect to the extensional order, which cannot be defined by programs ofPCF. In this paper, a paradigmatic programming language namedStPCF is proposed, which extends the languagePCF with two additional operators. The operational description of the extended language is presented in an effective way, although the evaluation of one of the new operators cannot be formalized in a PCFlike rewrite system. SinceStPCF can define all finite cliques of coherence spaces the above gap with stable models is filled, consequently stable models are fully abstract for the extended language. 1