Results 1  10
of
20
Evaluations of kfold Euler/Zagier sums: a compendium of results for arbitrary k
 THE ELECTRONIC JOURNAL OF COMBINATORICS 4 (NO.2) (1997), #R5
, 1997
"... Euler sums (also called Zagier sums) occur within the context of knot theory and quantum field theory. There are various conjectures related to these sums whose incompletion is a sign that both the mathematics and physics communities do not yet completely understand the field. Here, we assemble res ..."
Abstract

Cited by 67 (27 self)
 Add to MetaCart
Euler sums (also called Zagier sums) occur within the context of knot theory and quantum field theory. There are various conjectures related to these sums whose incompletion is a sign that both the mathematics and physics communities do not yet completely understand the field. Here, we assemble results for Euler/Zagier sums (also known as multidimensional zeta/harmonic sums) of arbitrary depth, including sign alternations. Many of our results were obtained empirically and are apparently new. By carefully compiling and examining a huge data base of high precision numerical evaluations, we can claim with some confidence that certain classes of results are exhaustive. While many proofs are lacking, we have sketched derivations of all results that have so far been proved.
Special Values of Multiple Polylogarithms
 Sém. Bourbaki, 53 e année, 2000–2001, n ◦ 885, Mars 2001; Astéisque 282 (2002
"... Abstract. Historically, the polylogarithm has attracted specialists and nonspecialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and highenergy physics. More recen ..."
Abstract

Cited by 59 (18 self)
 Add to MetaCart
Abstract. Historically, the polylogarithm has attracted specialists and nonspecialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and highenergy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including an intriguing conjecture of Don Zagier. 1.
On the Random Character of Fundamental Constant Expansions
 EXPERIMENTAL MATHEMATICS
, 2001
"... We propose a theory to explain random behavior for the digits
in the expansions of fundamental mathematical constants. At
the core of our approach is a general hypothesis concerning the distribution of the iterates generated by dynamical maps. On this main hypothesis, one obtains proofs of base2 no ..."
Abstract

Cited by 51 (14 self)
 Add to MetaCart
We propose a theory to explain random behavior for the digits
in the expansions of fundamental mathematical constants. At
the core of our approach is a general hypothesis concerning the distribution of the iterates generated by dynamical maps. On this main hypothesis, one obtains proofs of base2 normality—namely bit randomness in a specific technical sense— for a collection of celebrated constants, including , log 2, (3), and others. Also on the hypothesis, the number (5) is either rational or normal to base 2. We indicate a research connection between our dynamical model and the theory of pseudorandom number
generators.
Computational strategies for the Riemann zeta function
, 2000
"... We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of th ..."
Abstract

Cited by 45 (9 self)
 Add to MetaCart
We provide a compendium of evaluation methods for the Riemann zeta function, presenting formulae ranging from historical attempts to recently found convergent series to curious oddities old and new. We concentrate primarily on practical computational issues, such issues depending on the domain of the argument, the desired speed of computation, and the incidence of what we call “value recycling”.
Factorization Of The Tenth Fermat Number
 MATH. COMP
, 1999
"... We describe the complete factorization of the tenth Fermat number F 10 by the elliptic curve method (ECM). F 10 is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The 40digit factor was found after about 140 Mflopyears of computation. We also discuss the complete factor ..."
Abstract

Cited by 21 (10 self)
 Add to MetaCart
We describe the complete factorization of the tenth Fermat number F 10 by the elliptic curve method (ECM). F 10 is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The 40digit factor was found after about 140 Mflopyears of computation. We also discuss the complete factorization of other Fermat numbers by ECM, and summarize the factorizations of F 5 ; : : : ; F 11 .
A comparison of three highprecision quadrature schemes
 Experimental Mathematics
, 2004
"... The authors have implemented three numerical quadrature schemes, using the Arbitrary Precision (ARPREC) software package. The objective here is a quadrature facility that can efficiently evaluate to very high precision a large class of integrals typical of those encountered in experimental mathemati ..."
Abstract

Cited by 20 (11 self)
 Add to MetaCart
The authors have implemented three numerical quadrature schemes, using the Arbitrary Precision (ARPREC) software package. The objective here is a quadrature facility that can efficiently evaluate to very high precision a large class of integrals typical of those encountered in experimental mathematics, relying on a minimum of a priori information regarding the function to be integrated. Such a facility is useful, for example, to permit the experimental identification of definite integrals based on their numerical values. The performance and accuracy of these three quadrature schemes are compared using a suite of 15 integrals, ranging from continuous, wellbehaved functions on finite intervals to functions with infinite derivatives and blowup singularities at endpoints, as well as several integrals on an infinite interval. In results using 412digit arithmetic, we achieve at least 400digit accuracy, using two of the programs, for all problems except one highly oscillatory function on an infinite interval. Similar results were obtained using 1012digit arithmetic.
Special Values of Multidimensional Polylogarithms
 TRANS. AMER. MATH. SOC
, 1998
"... Historically, the polylogarithm has attracted specialists and nonspecialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and highenergy physics. More recently, w ..."
Abstract

Cited by 18 (11 self)
 Add to MetaCart
Historically, the polylogarithm has attracted specialists and nonspecialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and highenergy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including a longstanding conjec...
Factorization of the tenth and eleventh Fermat numbers
, 1996
"... . We describe the complete factorization of the tenth and eleventh Fermat numbers. The tenth Fermat number is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The eleventh Fermat number is a product of five prime factors with 6, 6, 21, 22 and 564 decimal digits. We also note a ..."
Abstract

Cited by 17 (8 self)
 Add to MetaCart
. We describe the complete factorization of the tenth and eleventh Fermat numbers. The tenth Fermat number is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The eleventh Fermat number is a product of five prime factors with 6, 6, 21, 22 and 564 decimal digits. We also note a new 27decimal digit factor of the thirteenth Fermat number. This number has four known prime factors and a 2391decimal digit composite factor. All the new factors reported here were found by the elliptic curve method (ECM). The 40digit factor of the tenth Fermat number was found after about 140 Mflopyears of computation. We discuss aspects of the practical implementation of ECM, including the use of specialpurpose hardware, and note several other large factors found recently by ECM. 1. Introduction For a nonnegative integer n, the nth Fermat number is F n = 2 2 n + 1. It is known that F n is prime for 0 n 4, and composite for 5 n 23. Also, for n 2, the factors of F n are of th...
The twentyfourth Fermat number is composite
, 2002
"... We have shown by machine proof that F24 = 2^2^24 + 1 is composite. The rigorous Pépin primality test was performed using independently developed programs running simultaneously on two different, physically separated processors. Each program employed a floatingpoint, FFTbased discrete weighted tran ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We have shown by machine proof that F24 = 2^2^24 + 1 is composite. The rigorous Pépin primality test was performed using independently developed programs running simultaneously on two different, physically separated processors. Each program employed a floatingpoint, FFTbased discrete weighted transform (DWT) to effect multiplication modulo F24. The final, respective Pépin residues obtained by these two machines were in complete agreement. Using intermediate residues stored periodically during one of the floatingpoint runs, a separate algorithm for pureinteger negacyclic convolution verified the result in a “wavefront” paradigm, by running simultaneously on numerous additional machines, to effect piecewise verification of a saturating set of deterministic links for the Pépin chain. We deposited a final Pépin residue for possible use by future investigators in the event that a proper factor of F24 should be discovered; herein we report the more compact, traditional SelfridgeHurwitz residues. For the sake of completeness, we also generated a Pépin residue for F23, and via the Suyama test determined that the known cofactor of this number is composite.