Results 1  10
of
118
Fast Linear Iterations for Distributed Averaging
 Systems and Control Letters
, 2003
"... We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear ..."
Abstract

Cited by 429 (13 self)
 Add to MetaCart
(Show Context)
We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several common heuristics that are based on the Laplacian of the associated graph.
SDPT3  a MATLAB software package for semidefinite programming
 OPTIMIZATION METHODS AND SOFTWARE
, 1999
"... This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also imp ..."
Abstract

Cited by 362 (17 self)
 Add to MetaCart
(Show Context)
This software package is a Matlab implementation of infeasible pathfollowing algorithms for solving standard semidefinite programming (SDP) problems. Mehrotratype predictorcorrector variants are included. Analogous algorithms for the homogeneous formulation of the standard SDP problem are also implemented. Four types of search directions are available, namely, the AHO, HKM, NT, and GT directions. A few classes of SDP problems are included as well. Numerical results for these classes show that our algorithms are fairly efficient and robust on problems with dimensions of the order of a few hundreds.
Semidefinite Programming for Ad Hoc Wireless Sensor Network Localization
, 2004
"... We describe an SDP relaxation based method for the position estimation problem in wireless sensor networks. The optimization problem is set up so as to minimize the error in sensor positions to fit distance measures. Observable gauges are developed to check the quality of the point estimation of sen ..."
Abstract

Cited by 225 (14 self)
 Add to MetaCart
We describe an SDP relaxation based method for the position estimation problem in wireless sensor networks. The optimization problem is set up so as to minimize the error in sensor positions to fit distance measures. Observable gauges are developed to check the quality of the point estimation of sensors or to detect erroneous sensors. The performance of this technique is highly satisfactory compared to other techniques. Very few anchor nodes are required to accurately estimate the position of all the unknown nodes in a network. Also the estimation errors are minimal even when the anchor nodes are not suitably placed within the network or the distance measurements are noisy.
A Spectral Bundle Method for Semidefinite Programming
 SIAM JOURNAL ON OPTIMIZATION
, 1997
"... A central drawback of primaldual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applica ..."
Abstract

Cited by 172 (7 self)
 Add to MetaCart
(Show Context)
A central drawback of primaldual interior point methods for semidefinite programs is their lack of ability to exploit problem structure in cost and coefficient matrices. This restricts applicability to problems of small dimension. Typically semidefinite relaxations arising in combinatorial applications have sparse and well structured cost and coefficient matrices of huge order. We present a method that allows to compute acceptable approximations to the optimal solution of large problems within reasonable time. Semidefinite programming problems with constant trace on the primal feasible set are equivalent to eigenvalue optimization problems. These are convex nonsmooth programming problems and can be solved by bundle methods. We propose replacing the traditional polyhedral cutting plane model constructed from subgradient information by a semidefinite model that is tailored for eigenvalue problems. Convergence follows from the traditional approach but a proof is included for completene...
Fastest mixing markov chain on a graph
 SIAM Review
"... Author names in alphabetical order. Submitted to SIAM Review, problems and techniques section. We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibr ..."
Abstract

Cited by 157 (16 self)
 Add to MetaCart
(Show Context)
Author names in alphabetical order. Submitted to SIAM Review, problems and techniques section. We consider a symmetric random walk on a connected graph, where each edge is labeled with the probability of transition between the two adjacent vertices. The associated Markov chain has a uniform equilibrium distribution; the rate of convergence to this distribution, i.e., the mixing rate of the Markov chain, is determined by the second largest (in magnitude) eigenvalue of the transition matrix. In this paper we address the problem of assigning probabilities to the edges of the graph in such a way as to minimize the second largest magnitude eigenvalue, i.e., the problem of ¯nding the fastest mixing Markov chain on the graph. We show that this problem can be formulated as a convex optimization problem, which can in turn be expressed as a semide¯nite program (SDP). This allows us to easily compute the (globally) fastest mixing Markov chain for any graph with a modest number of edges (say, 1000) using standard numerical methods for SDPs. Larger problems can be solved by
A Nonlinear Programming Algorithm for Solving Semidefinite Programs via Lowrank Factorization
 Mathematical Programming (series B
, 2001
"... In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm's distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according ..."
Abstract

Cited by 153 (10 self)
 Add to MetaCart
(Show Context)
In this paper, we present a nonlinear programming algorithm for solving semidefinite programs (SDPs) in standard form. The algorithm's distinguishing feature is a change of variables that replaces the symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factorization X = RR T . The rank of the factorization, i.e., the number of columns of R, is chosen minimally so as to enhance computational speed while maintaining equivalence with the SDP. Fundamental results concerning the convergence of the algorithm are derived, and encouraging computational results on some largescale test problems are also presented. Keywords: semidefinite programming, lowrank factorization, nonlinear programming, augmented Lagrangian, limited memory BFGS. 1 Introduction In the past few years, the topic of semidefinite programming, or SDP, has received considerable attention in the optimization community, where interest in SDP has included the investigation of...
Semidefinite optimization
 Acta Numerica
, 2001
"... Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the ..."
Abstract

Cited by 152 (2 self)
 Add to MetaCart
(Show Context)
Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the strongest column, checking the stability of a differential inclusion, and obtaining tight bounds for hard combinatorial optimization problems. Part also derives from great advances in our ability to solve such problems efficiently in theory and in practice (perhaps “or ” would be more appropriate: the most effective computational methods are not always provably efficient in theory, and vice versa). Here we describe this class of optimization problems, give a number of examples demonstrating its significance, outline its duality theory, and discuss algorithms for solving such problems.
Semidefinite programming based algorithms for sensor network localization
 ACM Transactions on Sensor Networks
, 2006
"... An SDP relaxation based method is developed to solve the localization problem in sensor networks using incomplete and inaccurate distance information. The problem is set up to find a set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints in the formulat ..."
Abstract

Cited by 113 (6 self)
 Add to MetaCart
(Show Context)
An SDP relaxation based method is developed to solve the localization problem in sensor networks using incomplete and inaccurate distance information. The problem is set up to find a set of sensor positions such that given distance constraints are satisfied. The nonconvex constraints in the formulation are then relaxed in order to yield a semidefinite program which can be solved efficiently. The basic model is extended in order to account for noisy distance information. In particular, a maximum likelihood based formulation and an interval based formulation are discussed. The SDP solution can then also be used as a starting point for steepest descent based local optimization techniques that can further refine the SDP solution. We also describe the extension of the basic method to develop an iterative distributed SDP method for solving very large scale semidefinite programs that arise out of localization problems for large dense networks and are intractable using centralized methods. The performance evaluation of the technique with regard to estimation accuracy and computation time is also presented by the means of extensive simulations. Our SDP scheme also seems to be applicable to solving other Euclidean geometry problems where points are locally connected.
Minimuminterference channel assignment in multiradio wireless mesh networks
 IN SECON
, 2006
"... In this paper, we consider multihop wireless mesh networks, where each router node is equipped with multiple radio interfaces and multiple channels are available for communication. We address the problem of assigning channels to communication links in the network with the objective of minimizing ov ..."
Abstract

Cited by 104 (2 self)
 Add to MetaCart
(Show Context)
In this paper, we consider multihop wireless mesh networks, where each router node is equipped with multiple radio interfaces and multiple channels are available for communication. We address the problem of assigning channels to communication links in the network with the objective of minimizing overall network interference. Since the number of radios on any node can be less than the number of available channels, the channel assignment must obey the constraint that the number of different channels assigned to the links incident on any node is atmost the number of radio interfaces on that node. The above optimization problem is known to be NPhard. We design centralized and distributed algorithms for the above channel assignment problem. To evaluate the quality of the solutions obtained by our algorithms, we develop a semidefinite program formulation of our optimization problem to obtain a lower bound on overall network interference. Empirical evaluations on randomly generated network graphs show that our algorithms perform close to the above established lower bound, with the difference diminishing rapidly with increase in number of radios. Also, detailed ns2 simulation studies demonstrate the performance potential of our channel assignment algorithms in 802.11based multiradio mesh networks.
Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework
 SIAM JOURNAL ON OPTIMIZATION
, 1999
"... A critical disadvantage of primaldual interiorpoint methods against dual interiorpoint methods for large scale SDPs (semidefinite programs) has been that the primal positive semidefinite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamenta ..."
Abstract

Cited by 104 (30 self)
 Add to MetaCart
(Show Context)
A critical disadvantage of primaldual interiorpoint methods against dual interiorpoint methods for large scale SDPs (semidefinite programs) has been that the primal positive semidefinite variable matrix becomes fully dense in general even when all data matrices are sparse. Based on some fundamental results about positive semidefinite matrix completion, this article proposes a general method of exploiting the aggregate sparsity pattern over all data matrices to overcome this disadvantage. Our method is used in two ways. One is a conversion of a sparse SDP having a large scale positive semidefinite variable matrix into an SDP having multiple but smaller size positive semidefinite variable matrices to which we can effectively apply any interiorpoint method for SDPs employing a standard blockdiagonal matrix data structure. The other way is an incorporation of our method into primaldual interiorpoint methods which we can apply directly to a given SDP. In Part II of this article, we wi...