Results

**1 - 3**of**3**### Spatial Mixture Modelling for Unobserved Point Processes: Examples

, 2009

"... We discuss Bayesian modelling and computational methods in analysis of indirectly observed spatial point processes. The context involves noisy measurements on an underlying point process that provide indirect and noisy data on locations of point outcomes. We are interested in problems in which the s ..."

Abstract
- Add to MetaCart

We discuss Bayesian modelling and computational methods in analysis of indirectly observed spatial point processes. The context involves noisy measurements on an underlying point process that provide indirect and noisy data on locations of point outcomes. We are interested in problems in which the spatial intensity function may be highly heterogenous, and so is modelled via flexible nonparametric Bayesian mixture models. Analysis aims to estimate the underlying intensity function and the abundance of realized but unobserved points. Our motivating applications involve immunological studies of multiple fluorescent intensity images in sections of lymphatic tissue where the point processes represent geographical configurations of cells. We are interested in estimating intensity functions and cell abundance for each of a series of such data sets to facilitate comparisons of outcomes at different times and with respect to differing experimental conditions. The analysis is heavily computational, utilizing recently introduced MCMC approaches for spatial point process mixtures and extending them to the broader new context here of unobserved outcomes. Further, our example applications are problems in which the individual objects of interest are not simply points, but rather small groups of pixels; this

### Improving Search Engines via Classification

, 2011

"... This thesis is the result of my own work, except where explicitly acknowledge in the text. ..."

Abstract
- Add to MetaCart

This thesis is the result of my own work, except where explicitly acknowledge in the text.

### A TELEOLOGICAL APPROACH TO ROBOT PROGRAMMING BY DEMONSTRATION

, 2010

"... This dissertation presents an approach to robot programming by demonstration based on two key concepts: demonstrator intent is the most meaningful signal that the robot can observe, and the robot should have a basic level of behavioral competency from which to interpret observed actions. Intent is a ..."

Abstract
- Add to MetaCart

This dissertation presents an approach to robot programming by demonstration based on two key concepts: demonstrator intent is the most meaningful signal that the robot can observe, and the robot should have a basic level of behavioral competency from which to interpret observed actions. Intent is a teleological, robust teaching signal invariant to many common sources of noise in training. The robot can use the knowledge encapsulated in sensorimotor schemas to interpret the demonstration. Furthermore, knowledge gained in prior demonstrations can be applied to future sessions. I argue that programming by demonstration be organized into declarative and procedural components. The declarative component represents a reusable outline of underlying behavior that can be applied to many different contexts. The procedural component represents the dynamic portion of the task that is based on features observed at run time. I describe how statistical models, and Bayesian methods in particular, can be used to model these components. These models have many features that are beneficial for learning in this domain, such as tolerance for uncertainty, and the ability to incorporate prior knowledge into inferences. I demonstrate this architecture through experiments on a bimanual humanoid robot using tasks from the pick and place domain.