Results 1  10
of
84
A comparison of document clustering techniques
 In KDD Workshop on Text Mining
, 2000
"... This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and Kmeans. (We used both a “standard” Kmeans algorithm and a “bisecting ” Kmeans algorithm.) Our results indicate that the bisecting Kmeans technique is ..."
Abstract

Cited by 602 (29 self)
 Add to MetaCart
This paper presents the results of an experimental study of some common document clustering techniques: agglomerative hierarchical clustering and Kmeans. (We used both a “standard” Kmeans algorithm and a “bisecting ” Kmeans algorithm.) Our results indicate that the bisecting Kmeans technique is better than the standard Kmeans approach and (somewhat surprisingly) as good or better than the hierarchical approaches that we tested.
Evaluation of Hierarchical Clustering Algorithms for Document Datasets
 Data Mining and Knowledge Discovery
, 2002
"... Fast and highquality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In particular, hierarchical clustering solutions provide a view of the data at ..."
Abstract

Cited by 253 (6 self)
 Add to MetaCart
(Show Context)
Fast and highquality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters. In particular, hierarchical clustering solutions provide a view of the data at different levels of granularity, making them ideal for people to visualize and interactively explore large document collections.
Criterion Functions for Document Clustering: Experiments and Analysis
, 2002
"... In recent years, we have witnessed a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and companywide intranets. This has led to an increased interest in developing methods that can help users to effectively navigate, summarize, and org ..."
Abstract

Cited by 201 (13 self)
 Add to MetaCart
(Show Context)
In recent years, we have witnessed a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and companywide intranets. This has led to an increased interest in developing methods that can help users to effectively navigate, summarize, and organize this information with the ultimate goal of helping them to find what they are looking for. Fast and highquality document clustering algorithms play an important role towards this goal as they have been shown to provide both an intuitive navigation/browsing mechanism by organizing large amounts of information into a small number of meaningful clusters as well as to greatly improve the retrieval performance either via clusterdriven dimensionality reduction, termweighting, or query expansion. This everincreasing importance of document clustering and the expanded range of its applications led to the development of a number of new and novel algorithms with different complexityquality tradeoffs. Among them, a class of clustering algorithms that have relatively low computational requirements are those that treat the clustering problem as an optimization process which seeks to maximize or minimize a particular clustering criterion function defined over the entire clustering solution.
CentroidBased Document Classification: Analysis Experimental Results
, 2000
"... . In this paper we present a simple lineartime centroidbased document classification algorithm, that despite its simplicity and robust performance, has not been extensively studied and analyzed. Our experiments show that this centroidbased classifier consistently and substantially outperforms ..."
Abstract

Cited by 135 (1 self)
 Add to MetaCart
(Show Context)
. In this paper we present a simple lineartime centroidbased document classification algorithm, that despite its simplicity and robust performance, has not been extensively studied and analyzed. Our experiments show that this centroidbased classifier consistently and substantially outperforms other algorithms such as Naive Bayesian, knearestneighbors, and C4.5, on a wide range of datasets. Our analysis shows that the similarity measure used by the centroidbased scheme allows it to classify a new document based on how closely its behavior matches the behavior of the documents belonging to different classes. This matching allows it to dynamically adjust for classes with different densities and accounts for dependencies between the terms in the different classes. 1 Introduction We have seen a tremendous growth in the volume of online text documents available on the Internet, digital libraries, news sources, and companywide intranets. It has been forecasted that these docu...
Principal Direction Divisive Partitioning
 Data Mining and Knowledge Discovery
, 1997
"... We propose a new algorithm capable of partitioning a set of documents or other samples based on an embedding in a high dimensional Euclidean space (i.e. in which every document is a vector of real numbers). The method is unusual in that it is divisive, as opposed to agglomerative, and operates by re ..."
Abstract

Cited by 131 (23 self)
 Add to MetaCart
(Show Context)
We propose a new algorithm capable of partitioning a set of documents or other samples based on an embedding in a high dimensional Euclidean space (i.e. in which every document is a vector of real numbers). The method is unusual in that it is divisive, as opposed to agglomerative, and operates by repeatedly splitting clusters into smaller clusters. The splits are not based on any distance or similarity measure. The documents are assembled in to a matrix which is very sparse. It is this sparsity that permits the algorithm to be very efficient. The performance of the method is illustrated with a set of text documents obtained from the World Wide Web. Some possible extensions are proposed for further investigation.
Hierarchical Document Clustering Using Frequent Itemsets
 IN PROC. SIAM INTERNATIONAL CONFERENCE ON DATA MINING 2003 (SDM 2003
, 2003
"... A major challenge in document clustering is the extremely high dimensionality. For example, the vocabulary for a document set can easily be thousands of words. On the other hand, each document often contains a small fraction of words in the vocabulary. These features require special handlings. Anoth ..."
Abstract

Cited by 127 (3 self)
 Add to MetaCart
A major challenge in document clustering is the extremely high dimensionality. For example, the vocabulary for a document set can easily be thousands of words. On the other hand, each document often contains a small fraction of words in the vocabulary. These features require special handlings. Another requirement is hierarchical clustering where clustered documents can be browsed according to the increasing specificity of topics. In this paper, we propose to use the notion of frequent itemsets, which comes from association rule mining, for document clustering. The intuition of our clustering criterion is that each cluster is identified by some common words, called frequent itemsets, for the documents in the cluster. Frequent itemsets are also used to produce a hierarchical topic tree for clusters. By focusing on frequent items, the dimensionality of the document set is drastically reduced. We show that this method outperforms best existing methods in terms of both clustering accuracy and scalability.
Frequent TermBased Text Clustering
, 2002
"... Text clustering methods can be used to structure large sets of text or hypertext documents. The wellknown methods of text clustering, however, do not really address the special problems of text clustering: very high dimensionality of the data, very large size of the databases and understandability ..."
Abstract

Cited by 123 (2 self)
 Add to MetaCart
Text clustering methods can be used to structure large sets of text or hypertext documents. The wellknown methods of text clustering, however, do not really address the special problems of text clustering: very high dimensionality of the data, very large size of the databases and understandability of the cluster description. In this paper, we introduce a novel approach which uses frequent item (term) sets for text clustering. Such frequent sets can be efficiently discovered using algorithms for association rule mining. To cluster based on frequent term sets, we measure the mutual overlap of frequent sets with respect to the sets of supporting documents. We present two algorithms for frequent termbased text clustering, FTC which creates flat clusterings and HFTC for hierarchical clustering. An experimental evaluation on classical text documents as well as on web documents demonstrates that the proposed algorithms obtain clusterings of comparable quality significantly more efficiently than stateoftheart text clustering algorithms. Furthermore, our methods provide an understandable description of the discovered clusters by their frequent term sets.
Orthogonal nonnegative matrix trifactorizations for clustering
 In SIGKDD
, 2006
"... Currently, most research on nonnegative matrix factorization (NMF) focus on 2factor X = FG T factorization. We provide a systematic analysis of 3factor X = FSG T NMF. While unconstrained 3factor NMF is equivalent to unconstrained 2factor NMF, constrained 3factor NMF brings new features to constr ..."
Abstract

Cited by 114 (22 self)
 Add to MetaCart
(Show Context)
Currently, most research on nonnegative matrix factorization (NMF) focus on 2factor X = FG T factorization. We provide a systematic analysis of 3factor X = FSG T NMF. While unconstrained 3factor NMF is equivalent to unconstrained 2factor NMF, constrained 3factor NMF brings new features to constrained 2factor NMF. We study the orthogonality constraint because it leads to rigorous clustering interpretation. We provide new rules for updating F,S,G and prove the convergence of these algorithms. Experiments on 5 datasets and a real world case study are performed to show the capability of biorthogonal 3factor NMF on simultaneously clustering rows and columns of the input data matrix. We provide a new approach of evaluating the quality of clustering on words using class aggregate distribution and multipeak distribution. We also provide an overview of various NMF extensions and examine their relationships.
Empirical and theoretical comparisons of selected criterion functions for document clustering
 Machine Learning
"... Abstract. This paper evaluates the performance of different criterion functions in the context of partitional clustering algorithms for document datasets. Our study involves a total of seven different criterion functions, three of which are introduced in this paper and four that have been proposed i ..."
Abstract

Cited by 110 (7 self)
 Add to MetaCart
(Show Context)
Abstract. This paper evaluates the performance of different criterion functions in the context of partitional clustering algorithms for document datasets. Our study involves a total of seven different criterion functions, three of which are introduced in this paper and four that have been proposed in the past. We present a comprehensive experimental evaluation involving 15 different datasets, as well as an analysis of the characteristics of the various criterion functions and their effect on the clusters they produce. Our experimental results show that there are a set of criterion functions that consistently outperform the rest, and that some of the newly proposed criterion functions lead to the best overall results. Our theoretical analysis shows that the relative performance of the criterion functions depends on (i) the degree to which they can correctly operate when the clusters are of different tightness, and (ii) the degree to which they can lead to reasonably balanced clusters. Keywords:
Concept indexing: A fast dimensionality reduction algorithm with applications to document retrieval and categorization
 IN CIKM’00
, 2000
"... In recent years, we have seen a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and companywide intranets. This has led to an increased interest in developing methods that can efficiently categorize and retrieve relevant information. Re ..."
Abstract

Cited by 80 (5 self)
 Add to MetaCart
In recent years, we have seen a tremendous growth in the volume of text documents available on the Internet, digital libraries, news sources, and companywide intranets. This has led to an increased interest in developing methods that can efficiently categorize and retrieve relevant information. Retrieval techniques based on dimensionality reduction, such as Latent Semantic Indexing (LSI), have been shown to improve the quality of the information being retrieved by capturing the latent meaning of the words present in the documents. Unfortunately, the high computational requirements of LSI and its inability to compute an effective dimensionality reduction in a supervised setting limits its applicability. In this paper we present a fast dimensionality reduction algorithm, called concept indexing (CI) that is equally effective for unsupervised and supervised dimensionality reduction. CI computes a kdimensional representation of a collection of documents by first clustering the documents into k groups, and then using the centroid vectors of the clusters to derive the axes of the reduced kdimensional space. Experimental results show that the dimensionality reduction computed by CI achieves comparable retrieval performance to that obtained using LSI, while requiring an order of magnitude less time. Moreover, when CI is used to compute the dimensionality reduction in a supervised setting, it greatly improves the performance of traditional classification algorithms such as C4.5 and kNN.