Results 1  10
of
530
Transform Analysis and Asset Pricing for Affine JumpDiffusions
 Econometrica
, 2000
"... In the setting of ‘‘affine’ ’ jumpdiffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applicat ..."
Abstract

Cited by 693 (39 self)
 Add to MetaCart
In the setting of ‘‘affine’ ’ jumpdiffusion state processes, this paper provides an analytical treatment of a class of transforms, including various Laplace and Fourier transforms as special cases, that allow an analytical treatment of a range of valuation and econometric problems. Example applications include fixedincome pricing models, with a role for intensitybased models of default, as well as a wide range of optionpricing applications. An illustrative example examines the implications of stochastic volatility and jumps for option valuation. This example highlights the impact on option ‘smirks ’ of the joint distribution of jumps in volatility and jumps in the underlying asset price, through both jump amplitude as well as jump timing.
Empirical performance of alternative option pricing models
 Journal of Finance
, 1997
"... reserved. Readers may make verbatim copies of this document for noncommercial purposes by any means, provided that this copyright notice appears on all such copies. ..."
Abstract

Cited by 677 (18 self)
 Add to MetaCart
(Show Context)
reserved. Readers may make verbatim copies of this document for noncommercial purposes by any means, provided that this copyright notice appears on all such copies.
The Variance Gamma Process and Option Pricing.
 European Finance Review
, 1998
"... : A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional par ..."
Abstract

Cited by 373 (34 self)
 Add to MetaCart
: A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional parameters are the drift of the Brownian motion and the volatility of the time change. These additional parameters provide control over the skewness and kurtosis of the return distribution. Closed forms are obtained for the return density and the prices of European options. The statistical and risk neutral densities are estimated for data on the S&P500 Index and the prices of options on this Index. It is observed that the statistical density is symmetric with some kurtosis, while the risk neutral density is negatively skewed with a larger kurtosis. The additional parameters also correct for pricing biases of the Black Scholes model that is a parametric special case of the option pricing model d...
Post'87 Crash Fears in the S&P 500 Futures Option Market
, 1998
"... Postcrash distributions inferred from S ..."
An empirical investigation of continuoustime equity return models
 Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract

Cited by 241 (13 self)
 Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equityindex returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuoustime representations for asset returns
The Impact of Jumps in Volatility and Returns
 Journal of Finance
, 2002
"... This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq ..."
Abstract

Cited by 239 (11 self)
 Add to MetaCart
This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq 100 index returns. Estimates of jump times, jump sizes and volatility are particularly useful for identifying the effects of these factors during periods of market stress, such as those in 1987, 1997 and 1998.
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 225 (5 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
Rangebased estimation of stochastic volatility models
, 2002
"... We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that rangebased volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence rangebased Gaussian qu ..."
Abstract

Cited by 221 (19 self)
 Add to MetaCart
We propose using the price range in the estimation of stochastic volatility models. We show theoretically, numerically, and empirically that rangebased volatility proxies are not only highly efficient, but also approximately Gaussian and robust to microstructure noise. Hence rangebased Gaussian quasimaximum likelihood estimation produces highly efficient estimates of stochastic volatility models and extractions of latent volatility. We use our method to examine the dynamics of daily exchange rate volatility and find the evidence points strongly toward twofactor models with one highly persistent factor and one quickly meanreverting factor. VOLATILITY IS A CENTRAL CONCEPT in finance, whether in asset pricing, portfolio choice, or risk management. Not long ago, theoretical models routinely assumed constant volatility ~e.g., Merton ~1969!, Black and Scholes ~1973!!. Today, however, we widely acknowledge that volatility is both time varying and predictable ~e.g., Andersen and Bollerslev ~1997!!, andstochastic volatility models are commonplace. Discrete and continuoustime stochastic volatility models are extensively used in theoretical finance, empirical finance, and financial econometrics, both in academe and industry ~e.g., Hull and
Stochastic Volatility for Lévy Processes
, 2001
"... Three processes re°ecting persistence of volatility are initially formulated by evaluating three L¶evy processes at a time change given by the integral of a mean reverting square root process. The model for the mean reverting time change is then generalized to include NonGaussian models that are so ..."
Abstract

Cited by 214 (12 self)
 Add to MetaCart
Three processes re°ecting persistence of volatility are initially formulated by evaluating three L¶evy processes at a time change given by the integral of a mean reverting square root process. The model for the mean reverting time change is then generalized to include NonGaussian models that are solutions to OU (OrnsteinUhlenbeck) equations driven by one sided discontinuous L¶evy processes permitting correlation with the stock. Positive stock price processes are obtained by exponentiating and mean correcting these processes, or alternatively by stochastically exponentiating these processes. The characteristic functions for the log price can be used to yield option prices via the fast Fourier transform. In general, mean corrected exponentiation performs better than employing the stochastic exponential. It is observed that the mean corrected exponential model is not a martingale in the ¯ltration in which it is originally de¯ned. This leads us to formulate and investigate the important property of martingale marginals where we seek martingales in altered ¯ltrations consistent with the one dimensional marginal distributions of the level of the process at each future date. 1