Results 1  10
of
277
Constraint Networks
, 1992
"... Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expression ..."
Abstract

Cited by 1016 (43 self)
 Add to MetaCart
Constraintbased reasoning is a paradigm for formulating knowledge as a set of constraints without specifying the method by which these constraints are to be satisfied. A variety of techniques have been developed for finding partial or complete solutions for different kinds of constraint expressions. These have been successfully applied to diverse tasks such as design, diagnosis, truth maintenance, scheduling, spatiotemporal reasoning, logic programming and user interface. Constraint networks are graphical representations used to guide strategies for solving constraint satisfaction problems (CSPs).
Qualitative Simulation
 Artificial Intelligence
, 2001
"... Qualitative simulation predicts the set of possible behaviors... ..."
Abstract

Cited by 460 (32 self)
 Add to MetaCart
Qualitative simulation predicts the set of possible behaviors...
Partial Constraint Satisfaction
, 1992
"... . A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying ..."
Abstract

Cited by 443 (23 self)
 Add to MetaCart
. A constraint satisfaction problem involves finding values for variables subject to constraints on which combinations of values are allowed. In some cases it may be impossible or impractical to solve these problems completely. We may seek to partially solve the problem, in particular by satisfying a maximal number of constraints. Standard backtracking and local consistency techniques for solving constraint satisfaction problems can be adapted to cope with, and take advantage of, the differences between partial and complete constraint satisfaction. Extensive experimentation on maximal satisfaction problems illuminates the relative and absolute effectiveness of these methods. A general model of partial constraint satisfaction is proposed. 1 Introduction Constraint satisfaction involves finding values for problem variables subject to constraints on acceptable combinations of values. Constraint satisfaction has wide application in artificial intelligence, in areas ranging from temporal r...
Theory and Practice of Constraint Handling Rules
, 1998
"... Constraint Handling Rules (CHR) are our proposal to allow more flexibility and applicationoriented customization of constraint systems. CHR are a declarative language extension especially designed for writing userdefined constraints. CHR are essentially a committedchoice language consisting of mu ..."
Abstract

Cited by 424 (35 self)
 Add to MetaCart
Constraint Handling Rules (CHR) are our proposal to allow more flexibility and applicationoriented customization of constraint systems. CHR are a declarative language extension especially designed for writing userdefined constraints. CHR are essentially a committedchoice language consisting of multiheaded guarded rules that rewrite constraints into simpler ones until they are solved. In this broad survey we aim at covering all aspects of CHR as they currently present themselves. Going from theory to practice, we will define syntax and semantics for CHR, introduce an important decidable property, confluence, of CHR programs and define a tight integration of CHR with constraint logic programming languages. This survey then describes implementations of the language before we review several constraint solvers  both traditional and non standard ones  written in the CHR language. Finally we introduce two innovative applications that benefited from using CHR.
Algorithms for Constraint Satisfaction Problems: A Survey
 AI MAGAZINE
, 1992
"... A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic ..."
Abstract

Cited by 399 (0 self)
 Add to MetaCart
A large variety of problems in Artificial Intelligence and other areas of computer science can be viewed as a special case of the constraint satisfaction problem. Some examples are machine vision, belief maintenance, scheduling, temporal reasoning, graph problems, floor plan design, planning genetic experiments, and the satisfiability problem. A number of different approaches have been developed for solving these problems. Some of them use constraint propagation to simplify the original problem. Others use backtracking to directly search for possible solutions. Some are a combination of these two techniques. This paper presents a brief overview of many of these approaches in a tutorial fashion.
Consistency techniques for numeric csps
, 1993
"... Many problems can be expressed in terms of a numeric constraint satisfaction problem over finite or continuous domains (numeric CSP). The purpose of this paper is to show that the consistency techniques that have been developed for CSPs can be adapted to numeric CSPs. Since the numeric domains are o ..."
Abstract

Cited by 214 (9 self)
 Add to MetaCart
Many problems can be expressed in terms of a numeric constraint satisfaction problem over finite or continuous domains (numeric CSP). The purpose of this paper is to show that the consistency techniques that have been developed for CSPs can be adapted to numeric CSPs. Since the numeric domains are ordered the underlying idea is to handle domains only by their bounds. The semantics that have been elaborated, plus the complexity analysis and good experimental results, confirm that these techniques can be used in real applications. 1
A Generic ArcConsistency Algorithm and its Specializations
 Artificial Intelligence
, 1992
"... Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of ..."
Abstract

Cited by 199 (7 self)
 Add to MetaCart
Consistency techniques have been studied extensively in the past as a way of tackling constraint satisfaction problems (CSP). In particular, various arcconsistency algorithms have been proposed, originating from Waltz's filtering algorithm [26] and culminating in the optimal algorithm AC4 of Mohr and Henderson [15]. AC4 runs in O(ed 2 ) in the worst case, where e is the number of arcs (or constraints) and d is the size of the largest domain. Being applicable to the whole class of (binary) CSP, these algorithms do not take into account the semantics of constraints. In this paper, we present a new generic arcconsistency algorithm AC5. This algorithm is parametrized on two specified procedures and can be instantiated to reduce to AC3 and AC4. More important, AC5 can be instantiated to produce an O(ed) algorithm for a number of important classes of constraints: functional, antifunctional, monotonic and their generalization to (functional, antifunctional, and monotonic) piecewise constraints. We also show that AC5 has an important application in constraint logic programming over finite domains [23]. The kernel of the constraint solver for such a programming language is an arcconsistency algorithm for a set of basic constraints. We prove that AC5, in conjunction with node consistency, provides a decision procedure for these constraints running in time O(ed).
HENTENRYCK: Helios: A modeling language for global optimization and its implementation in Newton
 Theoretical Computer Science
, 1997
"... ..."
Reasoning about Temporal Relations: A Maximal Tractable Subclass of Allen's Interval Algebra
 Journal of the ACM
, 1995
"... We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient ..."
Abstract

Cited by 176 (9 self)
 Add to MetaCart
We introduce a new subclass of Allen's interval algebra we call "ORDHorn subclass," which is a strict superset of the "pointisable subclass." We prove that reasoning in the ORDHorn subclass is a polynomialtime problem and show that the pathconsistency method is sufficient for deciding satisfiability. Further, using an extensive machinegenerated case analysis, we show that the ORDHorn subclass is a maximal tractable subclass of the full algebra (assuming<F NaN> P6=NP). In fact, it is the unique greatest tractable subclass amongst the subclasses that contain all basic relations. This work has been supported by the German Ministry for Research and Technology (BMFT) under grant ITW 8901 8 as part of the WIP project and under grant ITW 9201 as part of the TACOS project. 1 1 Introduction Temporal information is often conveyed qualitatively by specifying the relative positions of time intervals such as ". . . point to the figure while explaining the performance of the system . . . "...
SemiringBased Constraint Satisfaction and Optimization
 JOURNAL OF THE ACM
, 1997
"... We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be asso ..."
Abstract

Cited by 172 (21 self)
 Add to MetaCart
We introduce a general framework for constraint satisfaction and optimization where classical CSPs, fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others can be easily cast. The framework is based on a semiring structure, where the set of the semiring specifies the values to be associated with each tuple of values of the variable domain, and the two semiring operations (1 and 3) model constraint projection and combination respectively. Local consistency algorithms, as usually used for classical CSPs, can be exploited in this general framework as well, provided that certain conditions on the semiring operations are satisfied. We then show how this framework can be used to model both old and new constraint solving and optimization schemes, thus allowing one to both formally justify many informally taken choices in existing schemes, and to prove that local consistency techniques can be used also in newly defined schemes.