Results 1  10
of
11
Twotier relaxed heaps
 Proceedings of the 17th International Symposium on Algorithms and Computation, Lecture Notes in Computer Science 4288, SpringerVerlag
, 2006
"... Abstract. We introduce an adaptation of runrelaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worstcase cost of O(1) for findmin, insert, and decrease; and the worstcase cost of O(lg n) with at mos ..."
Abstract

Cited by 11 (8 self)
 Add to MetaCart
Abstract. We introduce an adaptation of runrelaxed heaps which provides efficient heap operations with respect to the number of element comparisons performed. Our data structure guarantees the worstcase cost of O(1) for findmin, insert, and decrease; and the worstcase cost of O(lg n) with at most lg n + 3 lg lg n + O(1) element comparisons for delete, improving the bound of 3lg n + O(1) on the number of element comparisons known for runrelaxed heaps. Here, n denotes the number of elements stored prior to the operation in question, and lg n equals max {1, log 2 n}. 1
A framework for speeding up priorityqueue operations
, 2004
"... Abstract. We introduce a framework for reducing the number of element comparisons performed in priorityqueue operations. In particular, we give a priority queue which guarantees the worstcase cost of O(1) per minimum finding and insertion, and the worstcase cost of O(log n) with at most log n + O ..."
Abstract

Cited by 8 (8 self)
 Add to MetaCart
Abstract. We introduce a framework for reducing the number of element comparisons performed in priorityqueue operations. In particular, we give a priority queue which guarantees the worstcase cost of O(1) per minimum finding and insertion, and the worstcase cost of O(log n) with at most log n + O(1) element comparisons per minimum deletion and deletion, improving the bound of 2log n + O(1) on the number of element comparisons known for binomial queues. Here, n denotes the number of elements stored in the data structure prior to the operation in question, and log n equals max {1,log 2 n}. We also give a priority queue that provides, in addition to the abovementioned methods, the prioritydecrease (or decreasekey) method. This priority queue achieves the worstcase cost of O(1) per minimum finding, insertion, and priority decrease; and the worstcase cost of O(log n) with at most log n + O(log log n) element comparisons per minimum deletion and deletion. CR Classification. E.1 [Data Structures]: Lists, stacks, and queues; E.2 [Data
The complexity of implicit and spaceefficient priority queues
 Proceedings of the 9th Workshop on Algorithms and Data Structures, Lecture
"... Abstract. In this paper we study the timespace complexity of implicit priority queues supporting the decreasekey operation. Our first result is that by using one extra word of storage it is possible to match the performance of Fibonacci heaps: constant amortized time for insert and decreasekey and ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. In this paper we study the timespace complexity of implicit priority queues supporting the decreasekey operation. Our first result is that by using one extra word of storage it is possible to match the performance of Fibonacci heaps: constant amortized time for insert and decreasekey and logarithmic time for deletemin. Our second result is a lower bound showing that that one extra word really is necessary. We reduce the decreasekey operation to a cellprobe type game called the Usher's Problem, where one must maintain a simple data structure without the aid of any auxiliary storage.
LRtree: a Logarithmic Decomposable Spatial Index Method
, 2003
"... this paper, we present LRtrees, a new efficient scheme for dynamic manipulation of large datasets, which combines the search performance of the bulkloaded Rtrees with the updated performance of R # trees. Experimental results provide evidence on the latter statement and illustrate the superior ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
this paper, we present LRtrees, a new efficient scheme for dynamic manipulation of large datasets, which combines the search performance of the bulkloaded Rtrees with the updated performance of R # trees. Experimental results provide evidence on the latter statement and illustrate the superiority of the proposed method
Project proposal: A meldable, iteratorvalid priority queue, CPH
, 2005
"... Abstract. The Standard Template Library (STL) is a library of generic algorithms and data structures that has been incorporated in the C++ standard and ships with all modern C++ compilers. In the CPH STL project the goal is to implement an enhanced edition of the STL. The priorityqueue class of the ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. The Standard Template Library (STL) is a library of generic algorithms and data structures that has been incorporated in the C++ standard and ships with all modern C++ compilers. In the CPH STL project the goal is to implement an enhanced edition of the STL. The priorityqueue class of the STL is just an adapter that makes any resizable array to a queue in which the elements stored are arranged according to a given ordering function. In the C++ standard no compulsory support for the operations delete(), increase(), or meld() is demanded even if those are utilized in many algorithms solving graphtheoretic or geometric problems. In this project, the goal is to implement a CPH STL extension of the priorityqueue class which provides, in addition to the normal priorityqueue functionality, the operations delete(), increase(), and meld(). To make the first two of these operations possible, the class must also guarantee that external references to compartments inside the data structure are kept valid at all times.
Putting your data structure on a diet
 In preparation (2006). [Ask Jyrki for details
, 2007
"... Abstract. Consider a data structure D that stores a dynamic collection of elements. Assume that D uses a linear number of words in addition to the elements stored. In this paper several datastructural transformations are described that can be used to transform D into another data structure D ′ that ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. Consider a data structure D that stores a dynamic collection of elements. Assume that D uses a linear number of words in addition to the elements stored. In this paper several datastructural transformations are described that can be used to transform D into another data structure D ′ that supports the same operations as D, has considerably smaller memory overhead than D, and performs the supported operations by a small constant factor or a small additive term slower than D, depending on the data structure and operation in question. The compaction technique has been successfully applied for linked lists, dictionaries, and priority queues.
Thin Heaps, Thick Heaps
, 2006
"... The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The Fibonacci heap was devised to provide an especially efficient implementation of Dijkstra’s shortest path algorithm. Although asyptotically efficient, it is not as fast in practice as other heap implementations. Expanding on ideas of Høyer, we describe three heap implementations (two versions of thin heaps and one of thick heaps) that have the same amortized efficiency as Fibonacci heaps but need less space and promise better practical performance. As part of our development, we fill in a gap in Høyer’s analysis.
Violation heaps: A better substitute for Fibonacci heaps
, 812
"... We give a priority queue that achieves the same amortized bounds as Fibonacci heaps. Namely, findmin requires O(1) worstcase time, insert, meld and decreasekey require O(1) amortized time, and deletemin requires O(log n) amortized time. Our structure is simple and promises a more efficient pract ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We give a priority queue that achieves the same amortized bounds as Fibonacci heaps. Namely, findmin requires O(1) worstcase time, insert, meld and decreasekey require O(1) amortized time, and deletemin requires O(log n) amortized time. Our structure is simple and promises a more efficient practical behavior compared to any other known Fibonaccilike heap. 1
Abstract On the Power of Structural Violations in Priority Queues
"... We give a priority queue that guarantees the worstcase cost of Θ(1) per minimum finding, insertion, and decrease; and the worstcase cost of Θ(lg n) with at most lg n + O ( √ lg n) element comparisons per deletion. Here, n denotes the number of elements stored in the data structure prior to the ope ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
We give a priority queue that guarantees the worstcase cost of Θ(1) per minimum finding, insertion, and decrease; and the worstcase cost of Θ(lg n) with at most lg n + O ( √ lg n) element comparisons per deletion. Here, n denotes the number of elements stored in the data structure prior to the operation in question, and lg n is a shorthand for max {1,log 2 n}. In contrast to a runrelaxed heap, which allows heaporder violations, our priority queue relies on structural violations. By mimicking a priority queue that allows heaporder violations with one that only allows structural violations, we improve the bound on the number of element comparisons per deletion to lg n + O(lg lg n).
RankPairing Heaps
"... Abstract. We introduce the rankpairing heap, a heap (priority queue) implementation that combines the asymptotic efficiency of Fibonacci heaps with much of the simplicity of pairing heaps. Unlike all other heap implementations that match the bounds of Fibonacci heaps, our structure needs only one c ..."
Abstract
 Add to MetaCart
Abstract. We introduce the rankpairing heap, a heap (priority queue) implementation that combines the asymptotic efficiency of Fibonacci heaps with much of the simplicity of pairing heaps. Unlike all other heap implementations that match the bounds of Fibonacci heaps, our structure needs only one cut and no other structural changes per key decrease; the trees representing the heap can evolve to have arbitrary structure. Our initial experiments indicate that rankpairing heaps perform almost as well as pairing heaps on typical input sequences and better on worstcase sequences. 1