Results 1  10
of
62
NonDeterministic Exponential Time has TwoProver Interactive Protocols
"... We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language ..."
Abstract

Cited by 394 (39 self)
 Add to MetaCart
We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language L. It was previously suspected (and proved in a relativized sense) that coNPcomplete languages do not admit such proof systems. In sharp contrast, we show that the class of languages having twoprover interactive proof systems is nondeterministic exponential time. After the recent results that all languages in PSPACE have single prover interactive proofs (Lund, Fortnow, Karloff, Nisan, and Shamir), this represents a further step demonstrating the unexpectedly immense power of randomization and interaction in efficient provability. Indeed, it follows that multiple provers with coins are strictly stronger than without, since NEXP # NP. In particular, for the first time, provably polynomial time intractable languages turn out to admit “efficient proof systems’’ since NEXP # P. We show that to prove membership in languages in EXP, the honest provers need the power of EXP only. A consequence, linking more standard concepts of structural complexity, states that if EX P has polynomial size circuits then EXP = Cg = MA. The first part of the proof of the main result extends recent techniques of polynomial extrapolation of truth values used in the single prover case. The second part is a verification scheme for multilinearity of an nvariable function held by an oracle and can be viewed as an independent result on program verification. Its proof rests on combinatorial techniques including the estimation of the expansion rate of a graph.
A PolynomialTime Approximation Algorithm for the Permanent of a Matrix with NonNegative Entries
 Journal of the ACM
, 2004
"... Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily ..."
Abstract

Cited by 314 (23 self)
 Add to MetaCart
Abstract. We present a polynomialtime randomized algorithm for estimating the permanent of an arbitrary n ×n matrix with nonnegative entries. This algorithm—technically a “fullypolynomial randomized approximation scheme”—computes an approximation that is, with high probability, within arbitrarily small specified relative error of the true value of the permanent. Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Nonnumerical
Cryptographic Limitations on Learning Boolean Formulae and Finite Automata
 PROCEEDINGS OF THE TWENTYFIRST ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING
, 1989
"... In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntact ..."
Abstract

Cited by 303 (15 self)
 Add to MetaCart
In this paper we prove the intractability of learning several classes of Boolean functions in the distributionfree model (also called the Probably Approximately Correct or PAC model) of learning from examples. These results are representation independent, in that they hold regardless of the syntactic form in which the learner chooses to represent its hypotheses. Our methods reduce the problems of cracking a number of wellknown publickey cryptosystems to the learning problems. We prove that a polynomialtime learning algorithm for Boolean formulae, deterministic finite automata or constantdepth threshold circuits would have dramatic consequences for cryptography and number theory: in particular, such an algorithm could be used to break the RSA cryptosystem, factor Blum integers (composite numbers equivalent to 3 modulo 4), and detect quadratic residues. The results hold even if the learning algorithm is only required to obtain a slight advantage in prediction over random guessing. The techniques used demonstrate an interesting duality between learning and cryptography. We also apply our results to obtain strong intractability results for approximating a generalization of graph coloring.
Geometric bounds for eigenvalues of Markov chains
, 1991
"... Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at ..."
Abstract

Cited by 271 (12 self)
 Add to MetaCart
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
The Markov Chain Monte Carlo method: an approach to approximate counting and integration
, 1996
"... In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stocha ..."
Abstract

Cited by 231 (12 self)
 Add to MetaCart
In the area of statistical physics, Monte Carlo algorithms based on Markov chain simulation have been in use for many years. The validity of these algorithms depends crucially on the rate of convergence to equilibrium of the Markov chain being simulated. Unfortunately, the classical theory of stochastic processes hardly touches on the sort of nonasymptotic analysis required in this application. As a consequence, it had previously not been possible to make useful, mathematically rigorous statements about the quality of the estimates obtained. Within the last ten years, analytical tools have been devised with the aim of correcting this deficiency. As well as permitting the analysis of Monte Carlo algorithms for classical problems in statistical physics, the introduction of these tools has spurred the development of new approximation algorithms for a wider class of problems in combinatorial enumeration and optimization. The “Markov chain Monte Carlo ” method has been applied to a variety of such problems, and often provides the only known efficient (i.e., polynomial time) solution technique.
Algebraic Algorithms for Sampling from Conditional Distributions
 Annals of Statistics
, 1995
"... We construct Markov chain algorithms for sampling from discrete exponential families conditional on a sufficient statistic. Examples include generating tables with fixed row and column sums and higher dimensional analogs. The algorithms involve finding bases for associated polynomial ideals and so a ..."
Abstract

Cited by 182 (15 self)
 Add to MetaCart
We construct Markov chain algorithms for sampling from discrete exponential families conditional on a sufficient statistic. Examples include generating tables with fixed row and column sums and higher dimensional analogs. The algorithms involve finding bases for associated polynomial ideals and so an excursion into computational algebraic geometry.
Improved bounds for mixing rates of Markov chains and multicommodity flow
 Combinatorics, Probability and Computing
, 1992
"... The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The ..."
Abstract

Cited by 178 (8 self)
 Add to MetaCart
The paper is concerned with tools for the quantitative analysis of finite Markov chains whose states are combinatorial structures. Chains of this kind have algorithmic applications in many areas, including random sampling, approximate counting, statistical physics and combinatorial optimisation. The efficiency of the resulting algorithms depends crucially on the mixing rate of the chain, i.e., the time taken for it to reach its stationary or equilibrium distribution. The paper presents a new upper bound on the mixing rate, based on the solution to a multicommodity flow problem in the Markov chain viewed as a graph. The bound gives sharper estimates for the mixing rate of several important complex Markov chains. As a result, improved bounds are obtained for the runtimes of randomised approximation algorithms for various problems, including computing the permanent of a 01 matrix, counting matchings in graphs, and computing the partition function of a ferromagnetic Ising system. Moreove...
Random Walks in PeertoPeer Networks
, 2004
"... We quantify the effectiveness of random walks for searching and construction of unstructured peertopeer (P2P) networks. For searching, we argue that random walks achieve improvement over flooding in the case of clustered overlay topologies and in the case of reissuing the same request several tim ..."
Abstract

Cited by 176 (2 self)
 Add to MetaCart
We quantify the effectiveness of random walks for searching and construction of unstructured peertopeer (P2P) networks. For searching, we argue that random walks achieve improvement over flooding in the case of clustered overlay topologies and in the case of reissuing the same request several times. For construction, we argue that an expander can be maintained dynamically with constant operations per addition. The key technical ingredient of our approach is a deep result of stochastic processes indicating that samples taken from consecutive steps of a random walk can achieve statistical properties similar to independent sampling (if the second eigenvalue of the transition matrix is bounded away from 1, which translates to good expansion of the network; such connectivity is desired, and believed to hold, in every reasonable network and network model). This property has been previously used in complexity theory for construction of pseudorandom number generators. We reveal another facet of this theory and translate savings in random bits to savings in processing overhead.
A Chernoff Bound For Random Walks On Expander Graphs
 SIAM J. Comput
, 1998
"... . We consider a finite random walk on a weighted graph G; we show that the fraction of time spent in a set of vertices A converges to the stationary probability #(A) with error probability exp ..."
Abstract

Cited by 79 (0 self)
 Add to MetaCart
.<F3.827e+05> We consider a finite random walk on a weighted graph<F3.539e+05><F3.827e+05> G; we show that the fraction of time spent in a set of vertices<F3.539e+05> A<F3.827e+05> converges to the stationary probability<F3.539e+05><F3.827e+05><F3.539e+05><F3.827e+05> #(A) with error probability exponentially small in the length of the random walk and the square of the size of the deviation from<F3.539e+05><F3.827e+05><F3.539e+05><F3.827e+05> #(A). The exponential bound is in terms of the expansion of<F3.539e+05> G<F3.827e+05> and improves previous results of [D. Aldous,<F3.405e+05> Probab. Engrg. Inform.<F3.827e+05> Sci., 1 (1987), pp. 3346], [L. Lovasz and M. Simonovits,<F3.405e+05> Random Structures<F3.827e+05> Algorithms, 4 (1993), pp. 359412], [M. Ajtai, J. Komlos, and E. Szemeredi,<F3.405e+05> Deterministic simulation of<F3.827e+05> logspace, in Proc. 19th ACM Symp. on Theory of Computing, 1987]. We show that taking the sample average from one trajectory gives a more e#cien...