Results

**1 - 2**of**2**### Inductive Inference of Approximations for Recursive Concepts

, 2005

"... This paper provides a systematic study of inductive inference of indexable concept classes in learning scenarios where the learner is successful if its final hypothesis describes a finite variant of the target concept, i.e., learning with anomalies. Learning from positive data only and from both pos ..."

Abstract
- Add to MetaCart

This paper provides a systematic study of inductive inference of indexable concept classes in learning scenarios where the learner is successful if its final hypothesis describes a finite variant of the target concept, i.e., learning with anomalies. Learning from positive data only and from both positive and negative data is distinguished. The following learning models are studied: learning in the limit, finite identification, set-driven learning, conservative inference, and behaviorally correct learning. The attention is focused on the case that the number of allowed anomalies is finite but not a priori bounded. However, results for the special case of learning with an a priori bounded number of anomalies are presented, too. Characterizations of the learning models with anomalies in terms of finite tell-tale sets are provided. The observed varieties in the degree of recursiveness of the relevant tell-tale sets are already sufficient to quantify the differences in the corresponding learning models with anomalies. Finally, a complete picture concerning the relations of all models of learning with and without anomalies mentioned above is derived.

### Learning Approximations of Recursive Concepts

, 2001

"... This paper provides a systematic study of inductive inference of indexable concept classes in learning scenarios where the learner is successful if its final hypothesis describes a finite variant of the target concept, i.e., learning with anomalies. Learning from positive data only and from both ..."

Abstract
- Add to MetaCart

This paper provides a systematic study of inductive inference of indexable concept classes in learning scenarios where the learner is successful if its final hypothesis describes a finite variant of the target concept, i.e., learning with anomalies. Learning from positive data only and from both positive and negative data is distinguished. The following learning models are studied: learning in the limit, finite identification, set-driven learning, conservative inference, and behaviorally correct learning. The attention is focused on the case that the number of allowed anomalies is finite but not a priori bounded. However, results for the special case of learning with an a priori bounded number of anomalies are presented, too. Characterizations of the learning models with anomalies in terms of finite telltale sets are provided. The observed varieties in the degree of recursiveness of the relevant tell-tale sets are already sufficient to quantify the differences in the corr...