Results 1  10
of
10
A Logarithmically Completely monotonic Function Involving the Gamma Functions 1
"... We show that the function x → [Γ(x+1)]1/x x[Γ(x+2)] 1/(x+1) is logarithmically completely monotonic on (0, ∞). This answers a question by A.Vernescu. ..."
Abstract

Cited by 16 (12 self)
 Add to MetaCart
We show that the function x → [Γ(x+1)]1/x x[Γ(x+2)] 1/(x+1) is logarithmically completely monotonic on (0, ∞). This answers a question by A.Vernescu.
NECESSARY AND SUFFICIENT CONDITIONS FOR A FUNCTION INVOLVING DIVIDED DIFFERENCES OF THE DI AND TRIGAMMA FUNCTIONS TO BE COMPLETELY MONOTONIC
, 903
"... Abstract. In the present paper, necessary and sufficient conditions are established for a function involving divided differences of the digamma and trigamma functions to be completely monotonic. Consequently, necessary and sufficient conditions are derived for a function involving the ratio of two g ..."
Abstract

Cited by 7 (7 self)
 Add to MetaCart
Abstract. In the present paper, necessary and sufficient conditions are established for a function involving divided differences of the digamma and trigamma functions to be completely monotonic. Consequently, necessary and sufficient conditions are derived for a function involving the ratio of two gamma functions to be logarithmically completely monotonic, and some double inequalities are deduced for bounding divided differences of polygamma functions. 1.
Bounds for the ratio of two gamma functions—From Wendel’s and related inequalities to logarithmically completely monotonic functions, submitted
"... Abstract. In the survey paper, along one of main lines of bounding the ratio of two gamma functions, we look back and analyse some known results, including Wendel’s, Gurland’s, Kazarinoff’s, Gautschi’s, Watson’s, Chu’s, LazarevićLupa¸s’s, Kershaw’s and ElezovićGiordanoPečarić’s inequalities, clai ..."
Abstract

Cited by 5 (5 self)
 Add to MetaCart
Abstract. In the survey paper, along one of main lines of bounding the ratio of two gamma functions, we look back and analyse some known results, including Wendel’s, Gurland’s, Kazarinoff’s, Gautschi’s, Watson’s, Chu’s, LazarevićLupa¸s’s, Kershaw’s and ElezovićGiordanoPečarić’s inequalities, claim, monotonic and convex properties. On the other hand, we introduce some related advances on the topic of bounding the ratio of two gamma functions in recent years. Contents
A property of logarithmically absolutely monotonic functions and the logarithmically complete monotonicity of a powerexponential function, submitted
 CLASS OF COMPLETELY MONOTONIC FUNCTIONS AND APPLICATIONS 11
"... Abstract. In the article, a notion “logarithmically absolutely monotonic function” is introduced, an inclusion that a logarithmically absolutely monotonic function is also absolutely monotonic is revealed, the logarithmically complete monotonicity and the logarithmically absolute monotonicity of the ..."
Abstract

Cited by 4 (4 self)
 Add to MetaCart
Abstract. In the article, a notion “logarithmically absolutely monotonic function” is introduced, an inclusion that a logarithmically absolutely monotonic function is also absolutely monotonic is revealed, the logarithmically complete monotonicity and the logarithmically absolute monotonicity of the function α x+β 1+ are proved, where α and β are given real parameters, a new proof x for the inclusion that a logarithmically completely monotonic function is also completely monotonic is given, and an open problem is posed.
Complete monotonicity of some functions involving polygamma functions, submitted
"... Abstract. In the present paper, we establish necessary and sufficient conditions for the functions x α ˛ ˛ψ (i) (x + β) ˛ ˛ and α ˛ ˛ψ (i) (x + β) ˛ ˛ − x ˛ ˛ψ (i+1) (x + β) ˛ ˛ respectively to be monotonic and completely monotonic on (0, ∞), where i ∈ N, α> 0 and β ≥ 0 are scalars, and ψ (i) ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
Abstract. In the present paper, we establish necessary and sufficient conditions for the functions x α ˛ ˛ψ (i) (x + β) ˛ ˛ and α ˛ ˛ψ (i) (x + β) ˛ ˛ − x ˛ ˛ψ (i+1) (x + β) ˛ ˛ respectively to be monotonic and completely monotonic on (0, ∞), where i ∈ N, α> 0 and β ≥ 0 are scalars, and ψ (i) (x) are polygamma functions. 1.
Monotonicity and logarithmic convexity relating to the volume of the unit ball, submitted
"... Abstract. Let Ωn stand for the volume of the unit ball in Rn for n ∈ N. In the 1/(n ln n) present paper, we prove that the sequence Ωn is logarithmically convex 1/(n ln n) Ω and that the sequence is strictly decreasing for n ≥ 2. In n Ω 1/[(n+1)ln(n+1)] n+1 addition, some monotonic and concave prope ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
Abstract. Let Ωn stand for the volume of the unit ball in Rn for n ∈ N. In the 1/(n ln n) present paper, we prove that the sequence Ωn is logarithmically convex 1/(n ln n) Ω and that the sequence is strictly decreasing for n ≥ 2. In n Ω 1/[(n+1)ln(n+1)] n+1 addition, some monotonic and concave properties of several functions relating to Ωn are extended and generalized.
LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS INVOLVING p − GAMMA FUNCTIONS
"... Abstract. In this paper we prove that the function fα,β,p(x) = Γp(x + β) px (x + xx+β−α () 2, and ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Abstract. In this paper we prove that the function fα,β,p(x) = Γp(x + β) px (x + xx+β−α () 2, and
(k − 1)! h (k−1)!
, 903
"... Abstract. The main aim of this paper is to prove that the double inequality ..."
Abstract
 Add to MetaCart
Abstract. The main aim of this paper is to prove that the double inequality
INEQUALITIES FOR 3LOGCONVEX FUNCTIONS
, 2008
"... ABSTRACT. This note gives a simple method for obtaining inequalities for ratios involving 3logconvex functions. As an example, an inequality for Wallis’s ratio of GautchiKershaw type is obtained. Inequalities for generalized means are also considered. ..."
Abstract
 Add to MetaCart
ABSTRACT. This note gives a simple method for obtaining inequalities for ratios involving 3logconvex functions. As an example, an inequality for Wallis’s ratio of GautchiKershaw type is obtained. Inequalities for generalized means are also considered.
Full Screen
, 2007
"... Abstract: This note gives a simple method for obtaining inequalities for ratios involving 3logconvex functions. As an example, an inequality for Wallis’s ratio of GautchiKershaw type is obtained. Inequalities for generalized means are also considered. ..."
Abstract
 Add to MetaCart
Abstract: This note gives a simple method for obtaining inequalities for ratios involving 3logconvex functions. As an example, an inequality for Wallis’s ratio of GautchiKershaw type is obtained. Inequalities for generalized means are also considered.