Results 1 
4 of
4
A classification of rapidly growing Ramsey functions
 PROC. AMER. MATH. SOC
, 2003
"... Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf i ..."
Abstract

Cited by 16 (5 self)
 Add to MetaCart
Let f be a numbertheoretic function. A finite set X of natural numbers is called flarge if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where we replace the largeness condition by a corresponding flargeness condition. We classify those functions f for which the statement PHf is independent of first order (Peano) arithmetic PA.Iffis a fixed iteration of the binary length function, then PHf is independent. On the other hand PHlog ∗ is provable in PA. More precisely let fα(i):=i  H −1 α (i) where  i h denotes the htimes iterated binary length of i and H−1 α denotes the inverse function of the αth member Hα of the Hardy hierarchy. Then PHfα is independent of PA (for α ≤ ε0) iffα = ε0.
Chromatic Variants of the ErdösSzekeres Theorem on Points in Convex Position
, 2002
"... ... In this paper we study several variants on problems related to the ErdösSzekeres Theorem about subsets of S in convex position, when additional chromatic constraints are considered. ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
... In this paper we study several variants on problems related to the ErdösSzekeres Theorem about subsets of S in convex position, when additional chromatic constraints are considered.
Brief introduction to unprovability
"... Abstract The article starts with a brief survey of Unprovability Theory as of autumn 2006. Then, as an illustration of the subject's modeltheoretic methods, we reprove exact versions of unprovability results for the ParisHarrington Principle and the KanamoriMcAloon Principle using indiscernibles. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract The article starts with a brief survey of Unprovability Theory as of autumn 2006. Then, as an illustration of the subject's modeltheoretic methods, we reprove exact versions of unprovability results for the ParisHarrington Principle and the KanamoriMcAloon Principle using indiscernibles. In addition, we obtain a short accessible proof of unprovability of the ParisHarrington Principle. The proof employs old ideas but uses only one colouring and directly extracts the set of indiscernibles from its homogeneous set. We also present modified, abridged statements whose unprovability proofs are especially simple. These proofs were tailored for teaching purposes. The article is intended to be accessible to the widest possible audience of mathematicians, philosophers and computer scientists as a brief survey of the subject, a guide through the literature in the field, an introduction to its modeltheoretic techniques and, finally, a modeltheoretic proof of a modern theorem in the subject. However, some understanding of logic is assumed on the part of the readers. The intended audience of this paper consists of logicians, logicaware mathematicians andthinkers of other backgrounds who are interested in unprovable mathematical statements.