Results 1  10
of
17
Algorithms: A quest for absolute definitions
 Bulletin of the European Association for Theoretical Computer Science
, 2003
"... y Abstract What is an algorithm? The interest in this foundational problem is not only theoretical; applications include specification, validation and verification of software and hardware systems. We describe the quest to understand and define the notion of algorithm. We start with the ChurchTurin ..."
Abstract

Cited by 19 (9 self)
 Add to MetaCart
y Abstract What is an algorithm? The interest in this foundational problem is not only theoretical; applications include specification, validation and verification of software and hardware systems. We describe the quest to understand and define the notion of algorithm. We start with the ChurchTuring thesis and contrast Church's and Turing's approaches, and we finish with some recent investigations.
Physical Hypercomputation and the Church–Turing Thesis
, 2003
"... We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a ..."
Abstract

Cited by 13 (0 self)
 Add to MetaCart
We describe a possible physical device that computes a function that cannot be computed by a Turing machine. The device is physical in the sense that it is compatible with General Relativity. We discuss some objections, focusing on those which deny that the device is either a computer or computes a function that is not Turing computable. Finally, we argue that the existence of the device does not refute the Church–Turing thesis, but nevertheless may be a counterexample to Gandy’s thesis.
The ChurchTuring Thesis over Arbitrary Domains
, 2008
"... The ChurchTuring Thesis has been the subject of many variations and interpretations over the years. Specifically, there are versions that refer only to functions over the natural numbers (as Church and Kleene did), while others refer to functions over arbitrary domains (as Turing intended). Our pu ..."
Abstract

Cited by 12 (9 self)
 Add to MetaCart
The ChurchTuring Thesis has been the subject of many variations and interpretations over the years. Specifically, there are versions that refer only to functions over the natural numbers (as Church and Kleene did), while others refer to functions over arbitrary domains (as Turing intended). Our purpose is to formalize and analyze the thesis when referring to functions over arbitrary domains. First, we must handle the issue of domain representation. We show that, prima facie, the thesis is not well defined for arbitrary domains, since the choice of representation of the domain might have a nontrivial influence. We overcome this problem in two steps: (1) phrasing the thesis for entire computational models, rather than for a single function; and (2) proving a “completeness” property of the recursive functions and Turing machines with respect to domain representations. In the second part, we propose an axiomatization of an “effective model of computation” over an arbitrary countable domain. This axiomatization is based on Gurevich’s postulates for sequential algorithms. A proof is provided showing that all models satisfying these axioms, regardless of underlying data structure, are of equivalent computational power to, or weaker than, Turing machines.
Quantum SpeedUp of Computations
 Philosophy of Science
, 2002
"... ChurchTuring Thesis as saying something about the scope and limitations of physical computing machines. Although this was not the intention of Church or Turing, the Physical Church Turing thesis is interesting in its own right. Consider, for example, Wolfram’s formulation: One can expect in fact th ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
ChurchTuring Thesis as saying something about the scope and limitations of physical computing machines. Although this was not the intention of Church or Turing, the Physical Church Turing thesis is interesting in its own right. Consider, for example, Wolfram’s formulation: One can expect in fact that universal computers are as powerful in their computational capabilities as any physically realizable system can be, that they can simulate any physical system...Nophysically implementable procedure could then shortcut a computationally irreducible process. (Wolfram 1985) Wolfram’s thesis consists of two parts: (a) Any physical system can be simulated (to any degree of approximation) by a universal Turing machine (b) Complexity bounds on Turing machine simulations have physical significance. For example, suppose that the computation of the minimum energy of some system of n particles takes at least exponentially (in n) many steps. Then the relaxation time of the actual physical system to its minimum energy state will also take exponential time. An even more extreme formulation of (more or less) the same thesis is due to Aharonov (1998): A probabilistic Turing machine can simulate any reasonable physical device in polynomial cost. She calls this The Modern Church Thesis. Aharonov refers here to probabilistic Turing machines that use random numbers in addition to the usual deterministic table of steps. It seems that such machines are capable to perform certain tasks faster than fully deterministic machines. The most famous randomized algorithm of that kind concerns the decision whether a given natural number is prime. A probabilistic algorithm that decides primality in a number of
A Formalization of the ChurchTuring Thesis for StateTransition Models
"... Abstract. Our goal is to formalize the ChurchTuring Thesis for a very large class of computational models. Specifically, the notion of an “effective model of computation ” over an arbitrary countable domain is axiomatized. This is accomplished by modifying Gurevich’s “Abstract State Machine ” postu ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. Our goal is to formalize the ChurchTuring Thesis for a very large class of computational models. Specifically, the notion of an “effective model of computation ” over an arbitrary countable domain is axiomatized. This is accomplished by modifying Gurevich’s “Abstract State Machine ” postulates for statetransition systems. A proof is provided that all models satisfying our axioms, regardless of underlying data structure—and including all standard statetransition models—are equivalent to (up to isomorphism), or weaker than, Turing machines. To allow the comparison of arbitrary models operating over arbitrary domains, we employ a quasiordering on computational models, based on their extensionality. LCMs can do anything that could be described as “rule of thumb ” or “purely mechanical”.... This is sufficiently well established that it is now agreed amongst logicians that “calculable by means of an LCM” is the correct accurate rendering of such phrases. 1
From logic to physics: How the meaning of computation changed over time.
"... The intuition guiding the de…nition of computation has shifted over time, a process that is re‡ected in the changing formulations of the ChurchTuring thesis. The theory of computation began with logic and gradually moved to the capacity of …nite automata. Consequently, modern computer models rely o ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
The intuition guiding the de…nition of computation has shifted over time, a process that is re‡ected in the changing formulations of the ChurchTuring thesis. The theory of computation began with logic and gradually moved to the capacity of …nite automata. Consequently, modern computer models rely on general physical principles, with quantum computers representing the extreme case. The paper discusses this development, and the challenges to the ChurchTuring thesis in its physical form, in particular, Kieu’s quantum computer and relativistic hypercomputation. Finally, the robustness of the boundary between polynomial and exponential time complexity is considered in connection with quantum computers and quantum information theory. Key words: ChurchTuring thesis, hypercomputation, quantum computers 1 The ChurchTuring thesis and the meaning of ‘computable function’ The common formulation of the ChurchTuring thesis runs as follows: Every computable function is computable by a Turing machine
Computational Processes, Observers and Turing Incompleteness
"... We propose a formal definition of Wolfram’s notion of computational process based on iterated transducers together with a weak observer, a model of computation that captures some aspects of physicslike computation. These processes admit a natural classification into decidable, intermediate and comp ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
We propose a formal definition of Wolfram’s notion of computational process based on iterated transducers together with a weak observer, a model of computation that captures some aspects of physicslike computation. These processes admit a natural classification into decidable, intermediate and complete, where intermediate processes correspond to recursively enumerable sets of intermediate degree in the classical setting. It is shown that a standard finite injury priority argument will not suffice to establish the existence of an intermediate computational process.
Universality, Turing Incompleteness and Observers
"... The development of the mathematical theory of computability was motivated in large part by the foundational crisis in mathematics. D. Hilbert suggested an antidote to all the foundational problems that were discovered in the late 19th century: his proposal, in essence, was to formalize mathematics a ..."
Abstract
 Add to MetaCart
The development of the mathematical theory of computability was motivated in large part by the foundational crisis in mathematics. D. Hilbert suggested an antidote to all the foundational problems that were discovered in the late 19th century: his proposal, in essence, was to formalize mathematics and construct a finite set of axioms that are strong enough to prove all proper theorems, but no more. Thus a proof of consistency and a proof of completeness were required. These proofs should be carried only by strictly finitary means so as to be beyond any reasonable criticism. As Hilbert pointed out [19], to carry out this project one needs to develop a better understanding of proofs as objects of mathematical discourse: To reach our goal, we must make the proofs as such the object of our investigation; we are thus compelled to a sort of proof theory which studies operations with the proofs themselves. Furthermore, Hilbert hoped to find a single, mechanical procedure that would, at least in principle, provide correct answers to all welldefined questions
Effective computation by humans and machines
, 2002
"... There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. ..."
Abstract
 Add to MetaCart
There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing argument for CTT by analyzing the processes carried out by a human computer. I then contend that if the Gandy–Sieg account is correct, then the notion of effective computability has changed after 1936. Today computer scientists view effective computability in terms of finite machine computation. My contention is supported by the current formulations of CTT, which always refer to machine computation, and by the current argumentation for CTT, which is different from the main arguments advanced by Turing and Church. I finally turn to discuss Robin Gandy’s characterization of machine computation. I suggest that there is an ambiguity regarding the types of machines Gandy was postulating. I offer three interpretations, which differ in their scope and limitations, and conclude that none provides the basis for claiming that Gandy characterized finite machine computation.