Results 1  10
of
38
Data structures for mobile data
 JOURNAL OF ALGORITHMS
, 1997
"... A kinetic data structure (KDS) maintains an attribute of interest in a system of geometric objects undergoing continuous motion. In this paper we develop a conceptual framework for kinetic data structures, propose a number of criteria for the quality of such structures, and describe a number of fund ..."
Abstract

Cited by 232 (51 self)
 Add to MetaCart
A kinetic data structure (KDS) maintains an attribute of interest in a system of geometric objects undergoing continuous motion. In this paper we develop a conceptual framework for kinetic data structures, propose a number of criteria for the quality of such structures, and describe a number of fundamental techniques for their design. We illustrate these general concepts by presenting kinetic data structures for maintaining the convex hull and the closest pair of moving points in the plane; these structures behavewell according to the proposed quality criteria for KDSs.
Arrangements and Their Applications
 Handbook of Computational Geometry
, 1998
"... The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arr ..."
Abstract

Cited by 78 (20 self)
 Add to MetaCart
The arrangement of a finite collection of geometric objects is the decomposition of the space into connected cells induced by them. We survey combinatorial and algorithmic properties of arrangements of arcs in the plane and of surface patches in higher dimensions. We present many applications of arrangements to problems in motion planning, visualization, range searching, molecular modeling, and geometric optimization. Some results involving planar arrangements of arcs have been presented in a companion chapter in this book, and are extended in this chapter to higher dimensions. Work by P.A. was supported by Army Research Office MURI grant DAAH049610013, by a Sloan fellowship, by an NYI award, and by a grant from the U.S.Israeli Binational Science Foundation. Work by M.S. was supported by NSF Grants CCR9122103 and CCR9311127, by a MaxPlanck Research Award, and by grants from the U.S.Israeli Binational Science Foundation, the Israel Science Fund administered by the Israeli Ac...
OutputSensitive Results on Convex Hulls, Extreme Points, and Related Problems
, 1996
"... . We use known data structures for rayshooting and linearprogramming queries to derive new outputsensitive results on convex hulls, extreme points, and related problems. We show that the f face convex hull of an npoint set P in a fixed dimension d # 2 can be constructed in O(n log f + (nf) ..."
Abstract

Cited by 68 (13 self)
 Add to MetaCart
. We use known data structures for rayshooting and linearprogramming queries to derive new outputsensitive results on convex hulls, extreme points, and related problems. We show that the f face convex hull of an npoint set P in a fixed dimension d # 2 can be constructed in O(n log f + (nf) 11/(#d/2#+1) log O(1) n) time; this is optimal if f = O(n 1/#d/2# / log K n) for some sufficiently large constant K . We also show that the h extreme points of P can be computed in O(n log O(1) h + (nh) 11/(#d/2#+1) log O(1) n) time. These results are then applied to produce an algorithm that computes the vertices of all the convex layers of P in O(n 2# ) time for any constant #<2/(#d/2# 2 + 1). Finally, we obtain improved time bounds for other problems including levels in arrangements and linear programming with few violated constraints. In all of our algorithms the input is assumed to be in general position. 1. Introduction Let P be a set of n points in ddimen...
Efficient Searching with Linear Constraints (Extended Abstract)
"... ) Pankaj K. Agarwal Lars Arge y Jeff Erickson z Paolo G. Franciosa x Jeffrey Scott Vitter  Abstract We show how to preprocess a set S of points in R d to get an external memory data structure that efficiently supports linearconstraint queries. Each query is in the form of a linear c ..."
Abstract

Cited by 56 (17 self)
 Add to MetaCart
) Pankaj K. Agarwal Lars Arge y Jeff Erickson z Paolo G. Franciosa x Jeffrey Scott Vitter  Abstract We show how to preprocess a set S of points in R d to get an external memory data structure that efficiently supports linearconstraint queries. Each query is in the form of a linear constraint a \Delta x b; the data structure must report all the points of S that satisfy the query. Our goal is to minimize the number of disk blocks required to store the data structure and the number of disk accesses (I/Os) required to answer a query. For d = 2, we present the first nearlinear size data structures that can answer linearconstraint queries using an optimal number of I/Os. We also present a linearsize data structure that can answer queries efficiently in the worst case. We combine these two approaches to obtain tradeoffs between space and query time. Finally, we show that some of our techniques extend to higher dimensions d. Center for Geometric Computing, Computer...
Dynamic planar convex hull
 Proc. 43rd IEEE Sympos. Found. Comput. Sci
, 2002
"... In this paper we determine the amortized computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage o ..."
Abstract

Cited by 52 (1 self)
 Add to MetaCart
In this paper we determine the amortized computational complexity of the dynamic convex hull problem in the planar case. We present a data structure that maintains a finite set of n points in the plane under insertion and deletion of points in amortized O(log n) time per operation. The space usage of the data structure is O(n). The data structure supports extreme point queries in a given direction, tangent queries through a given point, and queries for the neighboring points on the convex hull in O(log n) time. The extreme point queries can be used to decide whether or not a given line intersects the convex hull, and the tangent queries to determine whether a given point is inside the convex hull. We give a lower bound on the amortized asymptotic time complexity that matches the performance of this data structure.
Point Sets With Many KSets
, 1999
"... For any n, k, n 2k > 0, we construct a set of n points in the plane with ne p log k ksets. This improves the bounds of Erd}os, Lovasz, et al. As a consequence, we also improve the lower bound of Edelsbrunner for the number of halving hyperplanes in higher dimensions. 1 Introduction For ..."
Abstract

Cited by 45 (0 self)
 Add to MetaCart
For any n, k, n 2k > 0, we construct a set of n points in the plane with ne p log k ksets. This improves the bounds of Erd}os, Lovasz, et al. As a consequence, we also improve the lower bound of Edelsbrunner for the number of halving hyperplanes in higher dimensions. 1 Introduction For a set P of n points in the ddimensional space, a kset is subset P 0 P such that P 0 = P \H for some halfspace H, and jP 0 j = k. The problem is to determine the maximum number of ksets of an npoint set in the ddimensional space. Even in the most studied two dimensional case, we are very far from the solution, and in higher dimensions even much less is known. The rst results in the two dimensional case are due to Erd}os, Lovasz, Simmons and Straus [L71], [ELSS73]. They established an upper bound O(n p k), and a lower bound (n log k). Despite great interest in this problem [W86], [E87], [S91], [EVW97], [AACS98], partly due to its importance in the analysis of geometric alg...
Constructing Levels in Arrangements and Higher Order Voronoi Diagrams
 SIAM J. COMPUT
, 1994
"... We give simple randomized incremental algorithms for computing the klevel in an arrangement of n hyperplanes in two and threedimensional space. The expected running time of our algorithms is O(nk+nff(n) log n) for the planar case, and O(nk 2 +n log 3 n) for the threedimensional case. Both bo ..."
Abstract

Cited by 42 (10 self)
 Add to MetaCart
We give simple randomized incremental algorithms for computing the klevel in an arrangement of n hyperplanes in two and threedimensional space. The expected running time of our algorithms is O(nk+nff(n) log n) for the planar case, and O(nk 2 +n log 3 n) for the threedimensional case. Both bounds are optimal unless k is very small. The algorithm generalizes to computing the klevel in an arrangement of discs or xmonotone Jordan curves in the plane. Our approach can also be used to compute the klevel; this yields a randomized algorithm for computing the orderk Voronoi diagram of n points in the plane in expected time O(k(n \Gamma k) log n + n log 3 n).
Dynamic Planar Convex Hull Operations in NearLogarithmic Amortized Time
 JOURNAL OF THE ACM
, 1999
"... We give a data structure that allows arbitrary insertions and deletions on a planar point set P and supports basic queries on the convex hull of P , such as membership and tangentfinding. Updates take O(log 1+" n) amortized time and queries take O(log n) time each, where n is the maximum siz ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
We give a data structure that allows arbitrary insertions and deletions on a planar point set P and supports basic queries on the convex hull of P , such as membership and tangentfinding. Updates take O(log 1+" n) amortized time and queries take O(log n) time each, where n is the maximum size of P and " is any fixed positive constant. For some advanced queries such as bridgefinding, both our bounds increase to O(log 3=2 n). The only previous fully dynamic solution was by Overmars and van Leeuwen from 1981 and required O(log 2 n) time per update. 1 Introduction Although the algorithmic study of convex hulls is as old as computational geometry itself, the basic problem of optimally maintaining the planar convex hull under insertions and deletions of points [30, 34] remains unsolved and has been regarded by some as one of the foremost open problems in the area [14, 26]. Besides its natural appeal, such a dynamic data structure has a wide range of applications, as it is often us...
Random Sampling, Halfspace Range Reporting, and Construction of (≤k)Levels in Three Dimensions
 SIAM J. COMPUT
, 1999
"... Given n points in three dimensions, we show how to answer halfspace range reporting queries in O(logn+k) expected time for an output size k. Our data structure can be preprocessed in optimal O(n log n) expected time. We apply this result to obtain the first optimal randomized algorithm for the co ..."
Abstract

Cited by 32 (7 self)
 Add to MetaCart
Given n points in three dimensions, we show how to answer halfspace range reporting queries in O(logn+k) expected time for an output size k. Our data structure can be preprocessed in optimal O(n log n) expected time. We apply this result to obtain the first optimal randomized algorithm for the construction of the ( k)level in an arrangement of n planes in three dimensions. The algorithm runs in O(n log n+nk²) expected time. Our techniques are based on random sampling. Applications in two dimensions include an improved data structure for "k nearest neighbors" queries, and an algorithm that constructs the orderk Voronoi diagram in O(n log n + nk log k) expected time.
Arrangements
, 1997
"... INTRODUCTION Given a finite collection S of geometric objects such as hyperplanes or spheres in R d , the arrangement A(S) is the decomposition of R d into connected open cells of dimensions 0; 1; : : :; d induced by S. Besides being interesting in their own right, arrangements of hyperplanes ..."
Abstract

Cited by 28 (13 self)
 Add to MetaCart
INTRODUCTION Given a finite collection S of geometric objects such as hyperplanes or spheres in R d , the arrangement A(S) is the decomposition of R d into connected open cells of dimensions 0; 1; : : :; d induced by S. Besides being interesting in their own right, arrangements of hyperplanes have served as a unifying structure for many problems in discrete and computational geometry. With the recent advances in the study of arrangements of curved (algebraic) surfaces, arrangements have emerged as the underlying structure of geometric problems in a variety of `physical world' application domains such as robot motion planning and computer vision. This chapter is devoted to arrangements of hyperplanes and of curved surfaces in lowdimensional Euclidean space, with an emphasis on combinatorics and algorithms. In the first section we in