Results 1  10
of
41
Voronoi diagrams  a survey of a fundamental geometric data structure
 ACM COMPUTING SURVEYS
, 1991
"... This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. ..."
Abstract

Cited by 560 (5 self)
 Add to MetaCart
This paper presents a survey of the Voronoi diagram, one of the most fundamental data structures in computational geometry. It demonstrates the importance and usefulness of the Voronoi diagram in a wide variety of fields inside and outside computer science and surveys the history of its development. The paper puts particular emphasis on the unified exposition of its mathematical and algorithmic properties. Finally, the paper provides the first comprehensive bibliography on Voronoi diagrams and related structures.
Voronoi Diagrams and Delaunay Triangulations
 Computing in Euclidean Geometry
, 1992
"... The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi ..."
Abstract

Cited by 198 (3 self)
 Add to MetaCart
The Voronoi diagram is a fundamental structure in computationalgeometry and arises naturally in many different fields. This chapter surveys properties of the Voronoi diagram and its geometric dual, the Delaunay triangulation. The emphasis is on practical algorithms for the construction of Voronoi diagrams. 1 Introduction Let S be a set of n points in ddimensional euclidean space E d . The points of S are called sites. The Voronoi diagram of S splits E d into regions with one region for each site, so that the points in the region for site s2S are closer to s than to any other site in S. The Delaunay triangulation of S is the unique triangulation of S so that there are no elements of S inside the circumsphere of any triangle. Here `triangulation' is extended from the planar usage to arbitrary dimension: a triangulation decomposes the convex hull of S into simplices using elements of S as vertices. The existence and uniqueness of the Delaunay triangulation are perhaps not obvio...
Hierarchic Voronoi Skeletons
, 1995
"... Robust and timeefficient skeletonization of a (planar) shape, which is connectivity preserving and based on Euclidean metrics, can be achieved by first regularizing the Voronoi diagram (VD) of a shape's boundary points, i.e., by removal of noisesensitive parts of the tessellation and then by estab ..."
Abstract

Cited by 122 (3 self)
 Add to MetaCart
Robust and timeefficient skeletonization of a (planar) shape, which is connectivity preserving and based on Euclidean metrics, can be achieved by first regularizing the Voronoi diagram (VD) of a shape's boundary points, i.e., by removal of noisesensitive parts of the tessellation and then by establishing a hierarchic organization of skeleton constituents. Each component of the VD is attributed with a measure of prominence which exhibits the expected invariance under geometric transformations and noise. The second processing step, a hierarchic clustering of skeleton branches, leads to a multiresolution representation of the skeleton, termed skeleton pyramid.
Delaunay Refinement Algorithms for Triangular Mesh Generation
 Computational Geometry: Theory and Applications
, 2001
"... Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of tria ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
Delaunay refinement is a technique for generating unstructured meshes of triangles for use in interpolation, the finite element method, and the finite volume method. In theory and practice, meshes produced by Delaunay refinement satisfy guaranteed bounds on angles, edge lengths, the number of triangles, and the grading of triangles from small to large sizes. This article presents an intuitive framework for analyzing Delaunay refinement algorithms that unifies the pioneering mesh generation algorithms of L. Paul Chew and Jim Ruppert, improves the algorithms in several minor ways, and most importantly, helps to solve the difficult problem of meshing nonmanifold domains with small angles.
A Comparison of Sequential Delaunay Triangulation Algorithms
, 1996
"... This paper presents an experimental comparison of a number of different algorithms for computing the Deluanay triangulation. The algorithms examined are: Dwyer’s divide and conquer algorithm, Fortune’s sweepline algorithm, several versions of the incremental algorithm (including one by Ohya, Iri, an ..."
Abstract

Cited by 55 (0 self)
 Add to MetaCart
This paper presents an experimental comparison of a number of different algorithms for computing the Deluanay triangulation. The algorithms examined are: Dwyer’s divide and conquer algorithm, Fortune’s sweepline algorithm, several versions of the incremental algorithm (including one by Ohya, Iri, and Murota, a new bucketingbased algorithm described in this paper, and Devillers’s version of a Delaunaytree based algorithm that appears in LEDA), an algorithm that incrementally adds a correct Delaunay triangle adjacent to a current triangle in a manner similar to gift wrapping algorithms for convex hulls, and Barber’s convex hull based algorithm. Most of the algorithms examined are designed for good performance on uniformly distributed sites. However, we also test implementations of these algorithms on a number of nonuniform distibutions. The experiments go beyond measuring total running time, which tends to be machinedependent. We also analyze the major highlevel primitives that algorithms use and do an experimental analysis of how often implementations of these algorithms perform each operation.
Design and Implementation of a Practical Parallel Delaunay Algorithm
, 1999
"... This paper describes the design and implementation of a practical parallel algorithm for Delaunay triangulation that works well on general distributions. Although there have been many theoretical parallel algorithms for the problem, and some implementations based on bucketing that work well for unif ..."
Abstract

Cited by 31 (4 self)
 Add to MetaCart
This paper describes the design and implementation of a practical parallel algorithm for Delaunay triangulation that works well on general distributions. Although there have been many theoretical parallel algorithms for the problem, and some implementations based on bucketing that work well for uniform distributions, there has been little work on implementations for general distributions. We use the well known reduction of 2D Delaunay triangulation to find the 3D convex hull of points on a paraboloid. Based on this reduction we developed a variant of the Edelsbrunner and Shi 3D convex hull algorithm, specialized for the case when the point set lies on a paraboloid. This simplification reduces the work required by the algorithm (number of operations) from O(n log^2 n) to O(n log n). The depth (parallel time) is O(log^3 n) on a CREW PRAM. The algorithm is simpler than previous O(n log n) work parallel algorithms leading to smaller constants. Initial experiments using a variety of distributions showed that our parallel algorithm was within a factor of 2 in work from the best sequential algorithm. Based on these promising results, the algorithm was implemented using C and an MPIbased toolkit. Compared with previous work, the resulting implementation achieves significantly better speedups over good sequential code, does not assume a uniform distribution of points, and is widely portable due to its use of MPI as a communication mechanism. Results are presented for the IBM SP2, Cray T3D, SGI Power Challenge, and DEC AlphaCluster.
A Note on Point Location in Delaunay Triangulations of Random Points
, 1998
"... This short note considers the problem of point location in a Delaunay triangulation of n random points, using no additional preprocessing or storage other than a standard data structure representing the triangulation. A simple and easytoimplement (but, of course, worstcase suboptimal) heuristic i ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
This short note considers the problem of point location in a Delaunay triangulation of n random points, using no additional preprocessing or storage other than a standard data structure representing the triangulation. A simple and easytoimplement (but, of course, worstcase suboptimal) heuristic is shown to take expected time O(n ).
Developing a Practical ProjectionBased Parallel Delaunay Algorithm
 in 12th Annual Symposium on Computational Geometry
, 1996
"... In this paper we are concerned with developing a practical parallel algorithm for Delaunay triangulation that works well on general distributions, particularly those that arise in Scientific Computation. Although there have been many theoretical algorithms for the problem, and some implementations b ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
In this paper we are concerned with developing a practical parallel algorithm for Delaunay triangulation that works well on general distributions, particularly those that arise in Scientific Computation. Although there have been many theoretical algorithms for the problem, and some implementations based on bucketing that work well for uniform distributions, there has been little work on implementations for general distributions. We use the well known reduction of 2D Delaunay triangulation to 3D convex hull of points on a sphere or paraboloid. A variant of the Edelsbrunner and Shi 3D convex hull is used, but for the special case when the point set lies on either a sphere or a paraboloid. Our variant greatly reduces the constant costs from the 3D convex hull algorithm and seems to be a more promising for a practical implementation than other parallel approaches. We have run experiments on the algorithm using a variety of distributions that are motivated by various problems that use Delau...