Results 1  10
of
383
Normalized Cuts and Image Segmentation
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... ..."
A fast and high quality multilevel scheme for partitioning irregular graphs
 SIAM JOURNAL ON SCIENTIFIC COMPUTING
, 1998
"... Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc. ..."
Abstract

Cited by 795 (12 self)
 Add to MetaCart
Recently, a number of researchers have investigated a class of graph partitioning algorithms that reduce the size of the graph by collapsing vertices and edges, partition the smaller graph, and then uncoarsen it to construct a partition for the original graph [Bui and Jones, Proc.
Consistency of spectral clustering
, 2004
"... Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spe ..."
Abstract

Cited by 289 (15 self)
 Add to MetaCart
Consistency is a key property of statistical algorithms, when the data is drawn from some underlying probability distribution. Surprisingly, despite decades of work, little is known about consistency of most clustering algorithms. In this paper we investigate consistency of a popular family of spectral clustering algorithms, which cluster the data with the help of eigenvectors of graph Laplacian matrices. We show that one of the two of major classes of spectral clustering (normalized clustering) converges under some very general conditions, while the other (unnormalized), is only consistent under strong additional assumptions, which, as we demonstrate, are not always satisfied in real data. We conclude that our analysis provides strong evidence for the superiority of normalized spectral clustering in practical applications. We believe that methods used in our analysis will provide a basis for future exploration of Laplacianbased methods in a statistical setting.
A Fast Multilevel Implementation of Recursive Spectral Bisection for Partitioning Unstructured Problems
 Experience
, 1994
"... Unstructured meshes are used in many largescale scientific and engineering problems, including finitevolume methods for computational fluid dynamics and finiteelement methods for structural analysis. If unstructured problems such as these are to be solved on distributedmemory parallel computers, ..."
Abstract

Cited by 277 (7 self)
 Add to MetaCart
Unstructured meshes are used in many largescale scientific and engineering problems, including finitevolume methods for computational fluid dynamics and finiteelement methods for structural analysis. If unstructured problems such as these are to be solved on distributedmemory parallel computers, their data structures must be partitioned and distributed across processors; if they are to be solved efficiently, the partitioning must maximize load balance and minimize interprocessor communication. Recently the recursive spectral bisection method (RSB) has been shown to be very effective for such partitioning problems compared to alternative methods. Unfortunately, RSB in its simplest form is rather expensive. In this report we shall describe a multilevel implementation of RSB that can attain about an orderofmagnitude improvement in run time on typical examples. Keywords: graph partitioning, domain decomposition, MIMD machines, multilevel algorithm, spectral bisection, sp...
Multilevel hypergraph partitioning: Application in VLSI domain
 IEEE TRANS. VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS
, 1999
"... In this paper, we present a new hypergraphpartitioning algorithm that is based on the multilevel paradigm. In the multilevel paradigm, a sequence of successively coarser hypergraphs is constructed. A bisection of the smallest hypergraph is computed and it is used to obtain a bisection of the origina ..."
Abstract

Cited by 241 (21 self)
 Add to MetaCart
In this paper, we present a new hypergraphpartitioning algorithm that is based on the multilevel paradigm. In the multilevel paradigm, a sequence of successively coarser hypergraphs is constructed. A bisection of the smallest hypergraph is computed and it is used to obtain a bisection of the original hypergraph by successively projecting and refining the bisection to the next level finer hypergraph. We have developed new hypergraph coarsening strategies within the multilevel framework. We evaluate their performance both in terms of the size of the hyperedge cut on the bisection, as well as on the run time for a number of very large scale integration circuits. Our experiments show that our multilevel hypergraphpartitioning algorithm produces highquality partitioning in a relatively small amount of time. The quality of the partitionings produced by our scheme are on the average 6%–23 % better than those produced by other stateoftheart schemes. Furthermore, our partitioning algorithm is significantly faster, often requiring 4–10 times less time than that required by the other schemes. Our multilevel hypergraphpartitioning algorithm scales very well for large hypergraphs. Hypergraphs with over 100 000 vertices can be bisected in a few minutes on today’s workstations. Also, on the large hypergraphs, our scheme outperforms other schemes (in hyperedge cut) quite consistently with larger margins (9%–30%).
Performance of Dynamic Load Balancing Algorithms for Unstructured Mesh Calculations
 Concurrency
, 1991
"... If a finite element mesh has a sufficiently regular structure, it is easy to decide in advance how to distribute the mesh among the processors of a distributedmemory parallel processor, but if the mesh is unstructured, the problem becomes much more difficult. The distribution should be made so that ..."
Abstract

Cited by 158 (3 self)
 Add to MetaCart
If a finite element mesh has a sufficiently regular structure, it is easy to decide in advance how to distribute the mesh among the processors of a distributedmemory parallel processor, but if the mesh is unstructured, the problem becomes much more difficult. The distribution should be made so that each processor has approximately equal work to do, and such that communication overhead is minimized. If the mesh is solutionadaptive, i.e. the mesh and hence the load balancing problem change discretely during execution of the code, then it is most efficient to decide the optimal mesh distribution in parallel. In this paper three parallel algorithms, Orthogonal Recursive Bisection (ORB), Eigenvector Recursive Bisection (ERB) and a simple parallelization of Simulated Annealing (SA) have been implemented for load balancing a dynamic unstructured triangular mesh on 16 processors of an NCUBE machine. The test problem is a solutionadaptive Laplace solver, with an initial mesh of 280 elements,...
Parallel Programming in SplitC
 In Proceedings of Supercomputing '93
, 1993
"... We introduce the SplitC language, a parallel extension of C intended for high performance programming on distributed memory multiprocessors, and demonstrate the use of the language in optimizing parallel programs. SplitC provides a global address space with a clear concept of locality and unusual ..."
Abstract

Cited by 155 (18 self)
 Add to MetaCart
We introduce the SplitC language, a parallel extension of C intended for high performance programming on distributed memory multiprocessors, and demonstrate the use of the language in optimizing parallel programs. SplitC provides a global address space with a clear concept of locality and unusual assignment operators. These are used as tools to reduce the frequency and cost of remote access. The language allows a mixture of shared memory, message passing, and data parallel programming styles while providing efficient access to the underlying machine. We demonstrate the basic language concepts using regular and irregular parallel programs and give performance results for various stages of program optimization. 1 Overview SplitC is a parallel extension of the C programming language that supports efficient access to a global address space on current distributed memory multiprocessors. It retains the "small language" character of C and supports careful engineering and optimization of ...