Results 1  10
of
17
A new understanding of prediction markets via noregret learning
 In ACM EC
, 2010
"... We explore the striking mathematical connections that exist between market scoring rules, cost function based prediction markets, and noregret learning. We first show that any cost function based prediction market can be interpreted as an algorithm for the commonly studied problem of learning from ..."
Abstract

Cited by 31 (10 self)
 Add to MetaCart
We explore the striking mathematical connections that exist between market scoring rules, cost function based prediction markets, and noregret learning. We first show that any cost function based prediction market can be interpreted as an algorithm for the commonly studied problem of learning from expert advice by equating the set of outcomes on which bets are placed in the market with the set of experts in the learning setting, and equating trades made in the market with losses observed by the learning algorithm. If the loss of the market organizer is bounded, this bound can be used to derive an O ( √ T) regret bound for the corresponding learning algorithm. We then show that the class of markets with convex cost functions exactly corresponds to the class of Follow the Regularized Leader learning algorithms, with the choice of a cost function in the market corresponding to the choice of a regularizer in the learning problem. Finally, we show an equivalence between market scoring rules and prediction markets with convex cost functions. This implies both that any market scoring rule can be implemented as a cost function based market maker, and that market scoring rules can be interpreted naturally as Follow the Regularized Leader algorithms. These connections provide new insight into how it is that commonly studied markets, such as the Logarithmic Market Scoring Rule, can aggregate opinions into accurate estimates of the likelihood of future events.
Complexity of Combinatorial Market Makers ∗
"... We analyze the computational complexity of market maker pricing algorithms for combinatorial prediction markets. We focus on Hanson’s popular logarithmic market scoring rule market maker (LMSR). Our goal is to implicitly maintain correct LMSR prices across an exponentially large outcome space. We ex ..."
Abstract

Cited by 30 (17 self)
 Add to MetaCart
We analyze the computational complexity of market maker pricing algorithms for combinatorial prediction markets. We focus on Hanson’s popular logarithmic market scoring rule market maker (LMSR). Our goal is to implicitly maintain correct LMSR prices across an exponentially large outcome space. We examine both permutation combinatorics, where outcomes are permutations of objects, and Boolean combinatorics, where outcomes are combinations of binary events. We look at three restrictive languages that limit what traders can bet on. Even with severely limited languages, we find that LMSR pricing is #Phard, even when the same language admits polynomialtime matching without the market maker. We then propose an approximation technique for pricing permutation markets based on a recent algorithm for online permutation learning. The connections we draw between LMSR pricing and the vast literature on online learning with expert advice may be of independent interest.
A Practical LiquiditySensitive Automated Market Maker
 IN PROCEEDINGS OF THE 11TH ACM CONFERENCE ON ELECTRONIC COMMERCE (EC
, 2010
"... Current automated market makers over binary events suffer from two problems that make them impractical. First, they are unable to adapt to liquidity, so trades cause prices to move the same amount in both thick and thin markets. Second, under normal circumstances, the market maker runs at a deficit. ..."
Abstract

Cited by 20 (6 self)
 Add to MetaCart
Current automated market makers over binary events suffer from two problems that make them impractical. First, they are unable to adapt to liquidity, so trades cause prices to move the same amount in both thick and thin markets. Second, under normal circumstances, the market maker runs at a deficit. In this paper, we construct a market maker that is both sensitive to liquidity and can run at a profit. Our market maker has bounded loss for any initial level of liquidity and, as the initial level of liquidity approaches zero, worstcase loss approaches zero. For any level of initial liquidity we can establish a boundary in market state space such that, if the market terminates within that boundary, the market maker books a profit regardless of the realized outcome. Furthermore, we provide guidance as to how our market maker can be implemented over very large event spaces through a novel costfunctionbased sampling method.
An OptimizationBased Framework for Automated MarketMaking
 EC'11
, 2011
"... We propose a general framework for the design of securities markets over combinatorial or infinite state or outcome spaces. The framework enables the design of computationally efficient markets tailored to an arbitrary, yet relatively small, space of securities with bounded payoff. We prove that any ..."
Abstract

Cited by 14 (6 self)
 Add to MetaCart
We propose a general framework for the design of securities markets over combinatorial or infinite state or outcome spaces. The framework enables the design of computationally efficient markets tailored to an arbitrary, yet relatively small, space of securities with bounded payoff. We prove that any market satisfying a set of intuitive conditions must price securities via a convex cost function, which is constructed via conjugate duality. Rather than deal with an exponentially large or infinite outcome space directly, our framework only requires optimization over a convex hull. By reducing the problem of automated market making to convex optimization, where many efficient algorithms exist, we arrive at a range of new polynomialtime pricing mechanisms for various problems. We demonstrate the advantages of this framework with the design of some particular markets. We also show that by relaxing the convex hull we can gain computational tractability without compromising the market institution’s bounded budget.
Designing Markets for Prediction
, 2010
"... We survey the literature on prediction mechanisms, including prediction markets and peer prediction systems. We pay particular attention to the design process, highlighting the objectives and properties that are important in the design of good prediction mechanisms. ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
We survey the literature on prediction mechanisms, including prediction markets and peer prediction systems. We pay particular attention to the design process, highlighting the objectives and properties that are important in the design of good prediction mechanisms.
Price Updating in Combinatorial Prediction Markets with Bayesian Networks
"... To overcome the #Phardness of computing/updating prices in logarithm market scoring rulebased (LMSRbased) combinatorial prediction markets, Chen et al. [5] recently used a simple Bayesian network to represent the prices of securities in combinatorial prediction markets for tournaments, and showed ..."
Abstract

Cited by 6 (3 self)
 Add to MetaCart
To overcome the #Phardness of computing/updating prices in logarithm market scoring rulebased (LMSRbased) combinatorial prediction markets, Chen et al. [5] recently used a simple Bayesian network to represent the prices of securities in combinatorial prediction markets for tournaments, and showed that two types of popular securities are structure preserving. In this paper, we significantly extend this idea by employing Bayesian networks in general combinatorial prediction markets. We reveal a very natural connection between LMSRbased combinatorial prediction markets and probabilistic belief aggregation, which leads to a complete characterization of all structure preserving securities for decomposable network structures. Notably, the main results by Chen et al. [5] are corollaries of our characterization. We then prove that in order for a very basic set of securities to be structure preserving, the graph of the Bayesian network must be decomposable. We also discuss some approximation techniques for securities that are not structure preserving. 1
Efficient market making via convex optimization, and a connection to online learning
 ACM Transactions on Economics and Computation. To Appear
, 2012
"... We propose a general framework for the design of securities markets over combinatorial or infinite state or outcome spaces. The framework enables the design of computationally efficient markets tailored to an arbitrary, yet relatively small, space of securities with bounded payoff. We prove that any ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
We propose a general framework for the design of securities markets over combinatorial or infinite state or outcome spaces. The framework enables the design of computationally efficient markets tailored to an arbitrary, yet relatively small, space of securities with bounded payoff. We prove that any market satisfying a set of intuitive conditions must price securities via a convex cost function, which is constructed via conjugate duality. Rather than deal with an exponentially large or infinite outcome space directly, our framework only requires optimization over a convex hull. By reducing the problem of automated market making to convex optimization, where many efficient algorithms exist, we arrive at a range of new polynomialtime pricing mechanisms for various problems. We demonstrate the advantages of this framework with the design of some particular markets. We also show that by relaxing the convex hull we can gain computational tractability without compromising the market institution’s bounded budget. Although our framework was designed with the goal of deriving efficient automated market makers for markets with very large outcome spaces, this framework also provides new insights into the relationship between market design and machine learning, and into the complete market setting. Using our framework, we illustrate the mathematical parallels between cost function based markets and online learning and establish a correspondence between cost function based markets and market scoring rules for complete markets. 1
Combinatorial Prediction Markets for Event Hierarchies
"... We study combinatorial prediction markets where agents bet on the sum of values at any tree node in a hierarchy of events, for example the sum of page views among all the children within a web subdomain. We propose three expressive betting languages that seem natural, and analyze the complexity of p ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
We study combinatorial prediction markets where agents bet on the sum of values at any tree node in a hierarchy of events, for example the sum of page views among all the children within a web subdomain. We propose three expressive betting languages that seem natural, and analyze the complexity of pricing using Hanson’s logarithmic market scoring rule (LMSR) market maker. Sum of arbitrary subset (SAS) allows agents to bet on the weighted sum of an arbitrary subset of values. Sum with varying weights (SVW) allows agents to set their own weights in their bets but restricts them to only bet on subsets that correspond to tree nodes in a fixed hierarchy. We show that LMSR pricing is NPhard for both SAS and SVW. Sum with predefined weights (SPW) also restricts bets to nodes in a hierarchy, but using predefined weights. We derive a polynomial time pricing algorithm for SPW. We discuss the algorithm’s generalization to other betting contexts, including betting on maximum/minimum and betting on the product of binary values. Finally, we describe a prototype we built to predict web site page views and discuss the implementation issues that arose.
An Efficient MonteCarlo Algorithm for Pricing Combinatorial Prediction Markets for Tournaments
 PROCEEDINGS OF THE TWENTYSECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
, 2011
"... Computing the market maker price of a security in a combinatorial prediction market is #Phard. We devise a fully polynomial randomized approximation scheme (FPRAS) that computes the price of any security in disjunctive normal form (DNF) within an ɛ multiplicative error factor in time polynomial in ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Computing the market maker price of a security in a combinatorial prediction market is #Phard. We devise a fully polynomial randomized approximation scheme (FPRAS) that computes the price of any security in disjunctive normal form (DNF) within an ɛ multiplicative error factor in time polynomial in 1/ɛ and the size of the input, with high probability and under reasonable assumptions. Our algorithm is a MonteCarlo technique based on importance sampling. The algorithm can also approximately price securities represented in conjunctive normal form (CNF) with additive error bounds. To illustrate the applicability of our algorithm, we show that many securities in Yahoo!’s popular combinatorial prediction market game called Predictalot can be represented by DNF formulas of polynomial size.
Computational Challenges in
"... review articles doi:10.1145/1435417.1435435 Economic and social sciences will drive Internet protocols and services into the future. ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
review articles doi:10.1145/1435417.1435435 Economic and social sciences will drive Internet protocols and services into the future.