Results 1  10
of
351
Proof verification and hardness of approximation problems
 IN PROC. 33RD ANN. IEEE SYMP. ON FOUND. OF COMP. SCI
, 1992
"... We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probabilit ..."
Abstract

Cited by 797 (39 self)
 Add to MetaCart
We show that every language in NP has a probablistic verifier that checks membership proofs for it using logarithmic number of random bits and by examining a constant number of bits in the proof. If a string is in the language, then there exists a proof such that the verifier accepts with probability 1 (i.e., for every choice of its random string). For strings not in the language, the verifier rejects every provided “proof " with probability at least 1/2. Our result builds upon and improves a recent result of Arora and Safra [6] whose verifiers examine a nonconstant number of bits in the proof (though this number is a very slowly growing function of the input length). As a consequence we prove that no MAX SNPhard problem has a polynomial time approximation scheme, unless NP=P. The class MAX SNP was defined by Papadimitriou and Yannakakis [82] and hard problems for this class include vertex cover, maximum satisfiability, maximum cut, metric TSP, Steiner trees and shortest superstring. We also improve upon the clique hardness results of Feige, Goldwasser, Lovász, Safra and Szegedy [42], and Arora and Safra [6] and shows that there exists a positive ɛ such that approximating the maximum clique size in an Nvertex graph to within a factor of N ɛ is NPhard.
LEDA: A Platform for Combinatorial and Geometric Computing
, 1999
"... We give an overview of the LEDA platform for combinatorial and geometric computing and an account of its development. We discuss our motivation for building LEDA and to what extent we have reached our goals. We also discuss some recent theoretical developments. This paper contains no new technical ..."
Abstract

Cited by 711 (46 self)
 Add to MetaCart
We give an overview of the LEDA platform for combinatorial and geometric computing and an account of its development. We discuss our motivation for building LEDA and to what extent we have reached our goals. We also discuss some recent theoretical developments. This paper contains no new technical material. It is intended as a guide to existing publications about the system. We refer the reader also to our webpages for more information.
QuickCheck: A lightweight tool for random testing of Haskell programs.
 In ICFP,
, 2000
"... ABSTRACT QuickCheck is a tool which aids the Haskell programmer in formulating and testing properties of programs. Properties are described as Haskell functions, and can be automatically tested on random input, but it is also possible to dene custom test data generators. We present a n umber of cas ..."
Abstract

Cited by 428 (22 self)
 Add to MetaCart
(Show Context)
ABSTRACT QuickCheck is a tool which aids the Haskell programmer in formulating and testing properties of programs. Properties are described as Haskell functions, and can be automatically tested on random input, but it is also possible to dene custom test data generators. We present a n umber of case studies, in whic hthe tool w as successfully used, and also point out some pitfalls to avoid. Random testing is especially suitable for functional programs because properties can be stated at a ne grain. When a function is built from separately tested components, then random testing su ces to obtain good coverage of the de nition under test.
NonDeterministic Exponential Time has TwoProver Interactive Protocols
"... We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language ..."
Abstract

Cited by 416 (37 self)
 Add to MetaCart
We determine the exact power of twoprover interactive proof systems introduced by BenOr, Goldwasser, Kilian, and Wigderson (1988). In this system, two allpowerful noncommunicating provers convince a randomizing polynomial time verifier in polynomial time that the input z belongs to the language L. It was previously suspected (and proved in a relativized sense) that coNPcomplete languages do not admit such proof systems. In sharp contrast, we show that the class of languages having twoprover interactive proof systems is nondeterministic exponential time. After the recent results that all languages in PSPACE have single prover interactive proofs (Lund, Fortnow, Karloff, Nisan, and Shamir), this represents a further step demonstrating the unexpectedly immense power of randomization and interaction in efficient provability. Indeed, it follows that multiple provers with coins are strictly stronger than without, since NEXP # NP. In particular, for the first time, provably polynomial time intractable languages turn out to admit “efficient proof systems’’ since NEXP # P. We show that to prove membership in languages in EXP, the honest provers need the power of EXP only. A consequence, linking more standard concepts of structural complexity, states that if EX P has polynomial size circuits then EXP = Cg = MA. The first part of the proof of the main result extends recent techniques of polynomial extrapolation of truth values used in the single prover case. The second part is a verification scheme for multilinearity of an nvariable function held by an oracle and can be viewed as an independent result on program verification. Its proof rests on combinatorial techniques including the estimation of the expansion rate of a graph.
Probabilistic checking of proofs: a new characterization of NP
 JOURNAL OF THE ACM
, 1998
"... We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof ..."
Abstract

Cited by 414 (26 self)
 Add to MetaCart
We give a new characterization of NP: the class NP contains exactly those languages L for which membership proofs (a proof that an input x is in L) can be verified probabilistically in polynomial time using logarithmic number of random bits and by reading sublogarithmic number of bits from the proof. We discuss implications of this characterization; specifically, we show that approximating Clique and Independent Set, even in a very weak sense, is NPhard.
SelfTesting/Correcting with Applications to Numerical Problems
, 1990
"... Suppose someone gives us an extremely fast program P that we can call as a black box to compute a function f . Should we trust that P works correctly? A selftesting/correcting pair allows us to: (1) estimate the probability that P (x) 6= f(x) when x is randomly chosen; (2) on any input x, compute ..."
Abstract

Cited by 361 (27 self)
 Add to MetaCart
Suppose someone gives us an extremely fast program P that we can call as a black box to compute a function f . Should we trust that P works correctly? A selftesting/correcting pair allows us to: (1) estimate the probability that P (x) 6= f(x) when x is randomly chosen; (2) on any input x, compute f(x) correctly as long as P is not too faulty on average. Furthermore, both (1) and (2) take time only slightly more than Computer Science Division, U.C. Berkeley, Berkeley, California 94720, Supported by NSF Grant No. CCR 8813632. y International Computer Science Institute, Berkeley, California 94704 z Computer Science Division, U.C. Berkeley, Berkeley, California 94720, Supported by an IBM Graduate Fellowship and NSF Grant No. CCR 8813632. the original running time of P . We present general techniques for constructing simple to program selftesting /correcting pairs for a variety of numerical problems, including integer multiplication, modular multiplication, matrix multiplicatio...
Algebraic Methods for Interactive Proof Systems
, 1990
"... We present a new algebraic technique for the construction of interactive proof systems. We use our technique to prove that every language in the polynomialtime hierarchy has an interactive proof system. This technique played a pivotal role in the recent proofs that IP=PSPACE (Shamir) and that MIP ..."
Abstract

Cited by 338 (28 self)
 Add to MetaCart
We present a new algebraic technique for the construction of interactive proof systems. We use our technique to prove that every language in the polynomialtime hierarchy has an interactive proof system. This technique played a pivotal role in the recent proofs that IP=PSPACE (Shamir) and that MIP=NEXP (Babai, Fortnow and Lund).
A Secure and Reliable Bootstrap Architecture
 In IEEE Symposium on Security and Privacy
, 1997
"... In a computer system, the integrity of lower layers is treated as axiomatic by higher layers. Under the presumption that the hardware comprising the machine (the lowest layer) is valid, integrity of a layer can be guaranteed if and only if: (1) the integrity of the lower layers is checked, and (2) t ..."
Abstract

Cited by 303 (19 self)
 Add to MetaCart
In a computer system, the integrity of lower layers is treated as axiomatic by higher layers. Under the presumption that the hardware comprising the machine (the lowest layer) is valid, integrity of a layer can be guaranteed if and only if: (1) the integrity of the lower layers is checked, and (2) transitions to higher layers occur only after integrity checks on them are complete. The resulting integrity "chain " inductively guarantees system integrity. When these conditions are not met, as they typically are not in the bootstrapping (initialization) of a computer system, no integrity guarantees can be made. Yet, these guarantees are increasingly important to diverse applications such as Internet commerce, intrusion detection systems, and "active networks. " In this paper, we describe the AEGIS architecture for initializing a computer system. It validates integrity at each layer transition in the bootstrap process. AEGIS also includes a recovery process for integrity check failures, and we show how this results in robust systems. We discuss our prototype implementation for the IBM personal computer (PC) architecture, and show that the cost of such system
SmallBias Probability Spaces: Efficient Constructions and Applications
 SIAM J. Comput
, 1993
"... We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random var ..."
Abstract

Cited by 276 (13 self)
 Add to MetaCart
(Show Context)
We show how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with "almost" equal probability. They are called fflbiased random variables. The number of random bits needed to generate the random variables is O(log n + log 1 ffl ). Thus, if ffl is polynomially small, then the size of the sample space is also polynomial. Random variables that are fflbiased can be used to construct "almost" kwise independent random variables where ffl is a function of k. These probability spaces have various applications: 1. Derandomization of algorithms: many randomized algorithms that require only k wise independence of their random bits (where k is bounded by O(log n)), can be derandomized by using fflbiased random variables. 2. Reducing the number of random bits required by certain randomized algorithms, e.g., verification of matrix multiplication. 3. Exhaustive testing of combinatorial circui...
Checking Computations in Polylogarithmic Time
, 1991
"... . Motivated by Manuel Blum's concept of instance checking, we consider new, very fast and generic mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols [LFKN92], [Sha92], and especially the MIP = NEXP protocol from [BFL91]. We show that every no ..."
Abstract

Cited by 260 (10 self)
 Add to MetaCart
. Motivated by Manuel Blum's concept of instance checking, we consider new, very fast and generic mechanisms of checking computations. Our results exploit recent advances in interactive proof protocols [LFKN92], [Sha92], and especially the MIP = NEXP protocol from [BFL91]. We show that every nondeterministic computational task S(x; y), defined as a polynomial time relation between the instance x, representing the input and output combined, and the witness y can be modified to a task S 0 such that: (i) the same instances remain accepted; (ii) each instance/witness pair becomes checkable in polylogarithmic Monte Carlo time; and (iii) a witness satisfying S 0 can be computed in polynomial time from a witness satisfying S. Here the instance and the description of S have to be provided in errorcorrecting code (since the checker will not notice slight changes). A modification of the MIP proof was required to achieve polynomial time in (iii); the earlier technique yields N O(log log N)...