Results 1 
6 of
6
Near Optimal Signal Recovery From Random Projections: Universal Encoding Strategies?
, 2004
"... Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear m ..."
Abstract

Cited by 1242 (19 self)
 Add to MetaCart
Suppose we are given a vector f in RN. How many linear measurements do we need to make about f to be able to recover f to within precision ɛ in the Euclidean (ℓ2) metric? Or more exactly, suppose we are interested in a class F of such objects— discrete digital signals, images, etc; how many linear measurements do we need to recover objects from this class to within accuracy ɛ? This paper shows that if the objects of interest are sparse or compressible in the sense that the reordered entries of a signal f ∈ F decay like a powerlaw (or if the coefficient sequence of f in a fixed basis decays like a powerlaw), then it is possible to reconstruct f to within very high accuracy from a small number of random measurements. typical result is as follows: we rearrange the entries of f (or its coefficients in a fixed basis) in decreasing order of magnitude f  (1) ≥ f  (2) ≥... ≥ f  (N), and define the weakℓp ball as the class F of those elements whose entries obey the power decay law f  (n) ≤ C · n −1/p. We take measurements 〈f, Xk〉, k = 1,..., K, where the Xk are Ndimensional Gaussian
Decoding by Linear Programming
, 2004
"... This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to rec ..."
Abstract

Cited by 1054 (17 self)
 Add to MetaCart
This paper considers the classical error correcting problem which is frequently discussed in coding theory. We wish to recover an input vector f ∈ Rn from corrupted measurements y = Af + e. Here, A is an m by n (coding) matrix and e is an arbitrary and unknown vector of errors. Is it possible to recover f exactly from the data y? We prove that under suitable conditions on the coding matrix A, the input f is the unique solution to the ℓ1minimization problem (‖x‖ℓ1:= i xi) min g∈R n ‖y − Ag‖ℓ1 provided that the support of the vector of errors is not too large, ‖e‖ℓ0: = {i: ei ̸= 0}  ≤ ρ · m for some ρ> 0. In short, f can be recovered exactly by solving a simple convex optimization problem (which one can recast as a linear program). In addition, numerical experiments suggest that this recovery procedure works unreasonably well; f is recovered exactly even in situations where a significant fraction of the output is corrupted. This work is related to the problem of finding sparse solutions to vastly underdetermined systems of linear equations. There are also significant connections with the problem of recovering signals from highly incomplete measurements. In fact, the results introduced in this paper improve on our earlier work [5]. Finally, underlying the success of ℓ1 is a crucial property we call the uniform uncertainty principle that we shall describe in detail.
Guaranteed minimumrank solutions of linear matrix equations via nuclear norm minimization
, 2007
"... The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative ..."
Abstract

Cited by 470 (21 self)
 Add to MetaCart
(Show Context)
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NPhard, because it contains vector cardinality minimization as a special case. In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is sufficiently large. The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this preexisting concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
Error Correction via Linear Programming
, 2005
"... Suppose we wish to transmit a vector f ∈ Rn reliably. A frequently discussed approach consists in encoding f with an m by n coding matrix A. Assume now that a fraction of the entries of Af are corrupted in a completely arbitrary fashion. We do not know which entries are affected nor do we know how t ..."
Abstract

Cited by 94 (6 self)
 Add to MetaCart
Suppose we wish to transmit a vector f ∈ Rn reliably. A frequently discussed approach consists in encoding f with an m by n coding matrix A. Assume now that a fraction of the entries of Af are corrupted in a completely arbitrary fashion. We do not know which entries are affected nor do we know how they are affected. Is it possible to recover f exactly from the corrupted mdimensional vector y? This paper proves that under suitable conditions on the coding matrix A, the input f is the unique solution to the ℓ1minimization problem (�x�ℓ1: = i xi) min �y − Ag�ℓ1 g∈Rn provided that the fraction of corrupted entries is not too large, i.e. does not exceed some strictly positive constant ρ ∗ (numerical values for ρ ∗ are given). In other words, f can be recovered exactly by solving a simple convex optimization problem; in fact, a linear program. We report on numerical experiments suggesting that ℓ1minimization is amazingly effective; f is recovered exactly even in situations where a very significant fraction of the output is corrupted.
TracyWidom limit for the largest eigenvalue of a large class of complex sample covariance matrices
 ANN. PROBAB
, 2007
"... We consider the asymptotic fluctuation behavior of the largest eigenvalue of certain sample covariance matrices in the asymptotic regime where both dimensions of the corresponding data matrix go to infinity. More precisely, let X be an n × p matrix, and let its rows be i.i.d. complex normal vectors ..."
Abstract

Cited by 66 (6 self)
 Add to MetaCart
(Show Context)
We consider the asymptotic fluctuation behavior of the largest eigenvalue of certain sample covariance matrices in the asymptotic regime where both dimensions of the corresponding data matrix go to infinity. More precisely, let X be an n × p matrix, and let its rows be i.i.d. complex normal vectors with mean 0 and covariance �p. We show that for a large class of covariance matrices �p, the largest eigenvalue of X ∗ X is asymptotically distributed (after recentering and rescaling) as the Tracy–Widom distribution that appears in the study of the Gaussian unitary ensemble. We give explicit formulas for the centering and scaling sequences that are easy to implement and involve only the spectral distribution of the population covariance, n and p. The main theorem applies to a number of covariance models found in applications. For example, wellbehaved Toeplitz matrices as well as covariance matrices whose spectral distribution is a sum of atoms (under some conditions on the mass of the atoms) are among the models the theorem can handle. Generalizations of the theorem to certain spiked versions of our models and a.s. results about the largest eigenvalue are given. We also discuss a simple corollary that does not require normality of the entries of the data matrix and some consequences for applications in multivariate statistics.
Nearly optimal signal recovery from random projections: Universal encoding strategies?
 IEEE TRANS. INFO. THEORY
, 2006
"... Suppose we are given a vector f in a class F, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision in the Euclidean (`2) metric? This paper shows that if the objects of interest are sparse in a fixed ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Suppose we are given a vector f in a class F, e.g., a class of digital signals or digital images. How many linear measurements do we need to make about f to be able to recover f to within precision in the Euclidean (`2) metric? This paper shows that if the objects of interest are sparse in a fixed basis or compressible, then it is possible to reconstruct f to within very high accuracy from a small number of random measurements by solving a simple linear program. More precisely, suppose that the nth largest entry of the vector jfj (or of its coefficients in a fixed basis) obeys jfj(n) R 1 n01=p, where R>0 and p>0. Suppose that we take measurements yk = hf; Xki;k =1;...;K, where the Xk are Ndimensional Gaussian vectors with independent standard normal entries. Then for each f obeying the decay estimate above for some 0 < p < 1 and with overwhelming probability, our reconstruction f] , defined as the solution to the constraints