Results 1 - 10
of
291
The structure and function of complex networks
- SIAM REVIEW
, 2003
"... Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, ..."
Abstract
-
Cited by 2600 (7 self)
- Add to MetaCart
(Show Context)
Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations
, 2005
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract
-
Cited by 541 (48 self)
- Add to MetaCart
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in- and out-degree distributions, communities, small-world phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing superlinearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) orO(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study.
A Brief History of Generative Models for Power Law and Lognormal Distributions
- INTERNET MATHEMATICS
"... Recently, I became interested in a current debate over whether file size distributions are best modelled by a power law distribution or a a lognormal distribution. In trying ..."
Abstract
-
Cited by 414 (7 self)
- Add to MetaCart
Recently, I became interested in a current debate over whether file size distributions are best modelled by a power law distribution or a a lognormal distribution. In trying
Structure and evolution of online social networks
- In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining
, 2006
"... In this paper, we consider the evolution of structure within large online social networks. We present a series of measurements of two such networks, together comprising in excess of five million people and ten million friendship links, annotated with metadata capturing the time of every event in the ..."
Abstract
-
Cited by 400 (4 self)
- Add to MetaCart
(Show Context)
In this paper, we consider the evolution of structure within large online social networks. We present a series of measurements of two such networks, together comprising in excess of five million people and ten million friendship links, annotated with metadata capturing the time of every event in the life of the network. Our measurements expose a surprising segmentation of these networks into three regions: singletons who do not participate in the network; isolated communities which overwhelmingly display star structure; and a giant component anchored by a well-connected core region which persists even in the absence of stars. We present a simple model of network growth which captures these aspects of component structure. The model follows our ex-perimental results, characterizing users as either passive members of the network; inviters who encourage offline friends and acquain-tances to migrate online; and linkers who fully participate in the social evolution of the network.
Information Diffusion through Blogspace
- In WWW ’04
, 2004
"... We study the dynamics of information propagation in environments of low-overhead personal publishing, using a large collection of weblogs over time as our example domain. We characterize and model this collection at two levels. First, we present a macroscopic characterization of topic propagation th ..."
Abstract
-
Cited by 396 (5 self)
- Add to MetaCart
(Show Context)
We study the dynamics of information propagation in environments of low-overhead personal publishing, using a large collection of weblogs over time as our example domain. We characterize and model this collection at two levels. First, we present a macroscopic characterization of topic propagation through our corpus, formalizing the notion of long-running "chatter" topics consisting recursively of "spike" topics generated by outside world events, or more rarely, by resonances within the community. Second, we present a microscopic characterization of propagation from individual to individual, drawing on the theory of infectious diseases to model the flow. We propose, validate, and employ an algorithm to induce the underlying propagation network from a sequence of posts, and report on the results.
Graph evolution: Densification and shrinking diameters
- ACM TKDD
, 2007
"... How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include hea ..."
Abstract
-
Cited by 267 (16 self)
- Add to MetaCart
(Show Context)
How do real graphs evolve over time? What are “normal” growth patterns in social, technological, and information networks? Many studies have discovered patterns in static graphs, identifying properties in a single snapshot of a large network, or in a very small number of snapshots; these include heavy tails for in- and out-degree distributions, communities, small-world phenomena, and others. However, given the lack of information about network evolution over long periods, it has been hard to convert these findings into statements about trends over time. Here we study a wide range of real graphs, and we observe some surprising phenomena. First, most of these graphs densify over time, with the number of edges growing super-linearly in the number of nodes. Second, the average distance between nodes often shrinks over time, in contrast to the conventional wisdom that such distance parameters should increase slowly as a function of the number of nodes (like O(log n) or O(log(log n)). Existing graph generation models do not exhibit these types of behavior, even at a qualitative level. We provide a new graph generator, based on a “forest fire” spreading process, that has a simple, intuitive justification, requires very few parameters (like the “flammability ” of nodes), and produces graphs exhibiting the full range of properties observed both in prior work and in the present study. We also notice that the “forest fire” model exhibits a sharp transition between sparse graphs and graphs that are densifying. Graphs with decreasing distance between the nodes are generated around this transition point. Last, we analyze the connection between the temporal evolution of the degree distribution and densification of a graph. We find that the two are fundamentally related. We also observe that real networks exhibit this type of r
Statistical properties of community structure in large social and information networks
"... A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structur ..."
Abstract
-
Cited by 246 (14 self)
- Add to MetaCart
(Show Context)
A large body of work has been devoted to identifying community structure in networks. A community is often though of as a set of nodes that has more connections between its members than to the remainder of the network. In this paper, we characterize as a function of size the statistical and structural properties of such sets of nodes. We define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales, and we study over 70 large sparse real-world networks taken from a wide range of application domains. Our results suggest a significantly more refined picture of community structure in large real-world networks than has been appreciated previously. Our most striking finding is that in nearly every network dataset we examined, we observe tight but almost trivial communities at very small scales, and at larger size scales, the best possible communities gradually “blend in ” with the rest of the network and thus become less “community-like.” This behavior is not explained, even at a qualitative level, by any of the commonly-used network generation models. Moreover, this behavior is exactly the opposite of what one would expect based on experience with and intuition from expander graphs, from graphs that are well-embeddable in a low-dimensional structure, and from small social networks that have served as testbeds of community detection algorithms. We have found, however, that a generative model, in which new edges are added via an iterative “forest fire” burning process, is able to produce graphs exhibiting a network community structure similar to our observations.
What's New on the Web? The Evolution of the Web from a Search Engine Perspective
, 2004
"... We seek to gain improved insight into how Web search engines should cope with the evolving Web, in an attempt to provide users with the most up-to-date results possible. For this purpose we collected weekly snapshots of some 150 Web sites over the course of one year, and measured the evolution of co ..."
Abstract
-
Cited by 220 (15 self)
- Add to MetaCart
(Show Context)
We seek to gain improved insight into how Web search engines should cope with the evolving Web, in an attempt to provide users with the most up-to-date results possible. For this purpose we collected weekly snapshots of some 150 Web sites over the course of one year, and measured the evolution of content and link structure. Our measurements focus on aspects of potential interest to search engine designers: the evolution of link structure over time, the rate of creation of new pages and new distinct content on the Web, and the rate of change of the content of existing pages under search-centric measures of degree of change.
Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters
, 2008
"... A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins wit ..."
Abstract
-
Cited by 208 (17 self)
- Add to MetaCart
(Show Context)
A large body of work has been devoted to defining and identifying clusters or communities in social and information networks, i.e., in graphs in which the nodes represent underlying social entities and the edges represent some sort of interaction between pairs of nodes. Most such research begins with the premise that a community or a cluster should be thought of as a set of nodes that has more and/or better connections between its members than to the remainder of the network. In this paper, we explore from a novel perspective several questions related to identifying meaningful communities in large social and information networks, and we come to several striking conclusions. Rather than defining a procedure to extract sets of nodes from a graph and then attempt to interpret these sets as a “real ” communities, we employ approximation algorithms for the graph partitioning problem to characterize as a function of size the statistical and structural properties of partitions of graphs that could plausibly be interpreted as communities. In particular, we define the network community profile plot, which characterizes the “best ” possible community—according to the conductance measure—over a wide range of size scales. We study over 100 large real-world networks, ranging from traditional and on-line social networks, to technological and information networks and
Connected Components in Random Graphs with Given Expected Degree Sequences
- ANNALS OF COMBINATORICS
"... ..."