Results 1 
3 of
3
Towards a typed geometry of interaction
, 2005
"... We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a v ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
(Show Context)
We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a version of partial traces and trace ideals (related to previous work of Abramsky, Blute, and Panangaden); (ii) we do not require the existence of a reflexive object for our interpretation (the original GoI 1 and 2 were untyped and hence involved a bureaucracy of domain equation isomorphisms); (iii) we introduce an abstract notion of orthogonality (related to work of Hyland and Schalk) and use this to develop a version of Girard’s theory of types, datum and algorithms in our setting, (iv) we prove appropriate Soundness and Completeness Theorems for our interpretations in partially traced categories with orthogonality; (v) we end with an application to completeness of (the original) untyped GoI in a unique decomposition category.
Proofs as Polynomials
"... Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
Replace this file with prentcsmacro.sty for your meeting, or with entcsmacro.sty for your meeting. Both can be
Towards a Typed Geometry of Interaction Abstract
"... Girard’s Geometry of Interaction (GoI) develops a mathematical framework for modelling the dynamics of cutelimination. We introduce a typed version of GoI, called Multiobject GoI (MGoI) for multiplicative linear logic without units in categories which include previous (untyped) GoI models, as well ..."
Abstract
 Add to MetaCart
(Show Context)
Girard’s Geometry of Interaction (GoI) develops a mathematical framework for modelling the dynamics of cutelimination. We introduce a typed version of GoI, called Multiobject GoI (MGoI) for multiplicative linear logic without units in categories which include previous (untyped) GoI models, as well as models not possible in the original untyped version. The development of MGoI depends on a new theory of partial traces and trace classes, as well as an abstract notion of orthogonality (related to work of Hyland and Schalk.) We develop Girard’s original theory of types, data and algorithms in our setting, and show his execution formula to be an invariant of Cut Elimination. We prove Soundness and Completeness Theorems for the MGoI interpretation in partially traced categories with an orthogonality. Moreover, as an application of our MGoI interpretation, we prove a completeness theorem for the original untyped GoI interpretation of MLL in a traced unique decomposition category.