Results 1  10
of
961
Multiagent Reinforcement Learning: Theoretical Framework and an Algorithm
, 1998
"... In this paper, we adopt generalsum stochastic games as a framework for multiagent reinforcement learning. Our work extends previous work by Littman on zerosum stochastic games to a broader framework. We design a multiagent Qlearning method under this framework, and prove that it converges to a Na ..."
Abstract

Cited by 284 (4 self)
 Add to MetaCart
In this paper, we adopt generalsum stochastic games as a framework for multiagent reinforcement learning. Our work extends previous work by Littman on zerosum stochastic games to a broader framework. We design a multiagent Qlearning method under this framework, and prove that it converges to a Nash equilibrium under specified conditions. This algorithm is useful for finding the optimal strategy when there exists a unique Nash equilibrium in the game. When there exist multiple Nash equilibria in the game, this algorithm should be combined with other learning techniques to find optimal strategies.
Reinforcement learning with hierarchies of machines
 Advances in Neural Information Processing Systems 10
, 1998
"... We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transf ..."
Abstract

Cited by 240 (9 self)
 Add to MetaCart
We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transferred across problems and in which component solutions can be recombined to solve larger and more complicated problems. Our approach can be seen as providing a link between reinforcement learning and “behaviorbased ” or “teleoreactive ” approaches to control. We present provably convergent algorithms for problemsolving and learning with hierarchical machines and demonstrate their effectiveness on a problem with several thousand states. 1
Nearoptimal reinforcement learning in polynomial time
 Machine Learning
, 1998
"... We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve nearoptimal return in general Markov decision processes. After observing that the number of actions required to approach the optimal return is lower bounded by the m ..."
Abstract

Cited by 237 (3 self)
 Add to MetaCart
We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve nearoptimal return in general Markov decision processes. After observing that the number of actions required to approach the optimal return is lower bounded by the mixing time T of the optimal policy (in the undiscounted case) or by the horizon time T (in the discounted case), we then give algorithms requiring a number of actions and total computation time that are only polynomial in T and the number of states, for both the undiscounted and discounted cases. An interesting aspect of our algorithms is their explicit handling of the ExplorationExploitation tradeoff. 1
Learning policies for partially observable environments: Scaling up
, 1995
"... Partially observable Markov decision processes (pomdp's) model decision problems in which an agent tries to maximize its reward in the face of limited and/or noisy sensor feedback. While the study of pomdp's is motivated by a need to address realistic problems, existing techniques for finding optim ..."
Abstract

Cited by 234 (11 self)
 Add to MetaCart
Partially observable Markov decision processes (pomdp's) model decision problems in which an agent tries to maximize its reward in the face of limited and/or noisy sensor feedback. While the study of pomdp's is motivated by a need to address realistic problems, existing techniques for finding optimal behavior do not appear to scale well and have been unable to find satisfactory policies for problems with more than a dozen states. After a brief review of pomdp's, this paper discusses several simple solution methods and shows that all are capable of finding nearoptimal policies for a selection of extremely small pomdp's taken from the learning literature. In contrast, we show that none are able to solve a slightly larger and noisier problem based on robot navigation. We find that a combination of two novel approaches performs well on these problems and suggest methods for scaling to even larger and more complicated domains. 1 Introduction Mobile robots must act on the basis of thei...
Exploiting structure in policy construction
 IJCAI95, pp.1104–1111
, 1995
"... Markov decision processes (MDPs) have recently been applied to the problem of modeling decisiontheoretic planning. While traditional methods for solving MDPs are often practical for small states spaces, their effectiveness for large AI planning problems is questionable. We present an algorithm, call ..."
Abstract

Cited by 226 (22 self)
 Add to MetaCart
Markov decision processes (MDPs) have recently been applied to the problem of modeling decisiontheoretic planning. While traditional methods for solving MDPs are often practical for small states spaces, their effectiveness for large AI planning problems is questionable. We present an algorithm, called structured policy iteration (SPI), that constructs optimal policies without explicit enumeration of the state space. The algorithm retains the fundamental computational steps of the commonly used modified policy iteration algorithm, but exploitsthe variable and propositionalindependencies reflected in a temporal Bayesian network representation of MDPs. The principles behind SPI can be applied to any structured representation of stochastic actions, policies and value functions, and the algorithm itself can be used in conjunction with recent approximation methods. 1
SPUDD: Stochastic planning using decision diagrams
 In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence
, 1999
"... Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that use ..."
Abstract

Cited by 178 (17 self)
 Add to MetaCart
Recently, structured methods for solving factored Markov decisions processes (MDPs) with large state spaces have been proposed recently to allow dynamic programming to be applied without the need for complete state enumeration. We propose and examine a new value iteration algorithm for MDPs that uses algebraic decision diagrams (ADDs) to represent value functions and policies, assuming an ADD input representation of the MDP. Dynamic programming is implemented via ADD manipulation. We demonstrate our method on a class of large MDPs (up to 63 million states) and show that significant gains can be had when compared to treestructured representations (with up to a thirtyfold reduction in the number of nodes required to represent optimal value functions). 1
Stochastic Dynamic Programming with Factored Representations
, 1997
"... Markov decision processes(MDPs) have proven to be popular models for decisiontheoretic planning, but standard dynamic programming algorithms for solving MDPs rely on explicit, statebased specifications and computations. To alleviate the combinatorial problems associated with such methods, we propo ..."
Abstract

Cited by 145 (10 self)
 Add to MetaCart
Markov decision processes(MDPs) have proven to be popular models for decisiontheoretic planning, but standard dynamic programming algorithms for solving MDPs rely on explicit, statebased specifications and computations. To alleviate the combinatorial problems associated with such methods, we propose new representational and computational techniques for MDPs that exploit certain types of problem structure. We use dynamic Bayesian networks (with decision trees representing the local families of conditional probability distributions) to represent stochastic actions in an MDP, together with a decisiontree representation of rewards. Based on this representation, we develop versions of standard dynamic programming algorithms that directly manipulate decisiontree representations of policies and value functions. This generally obviates the need for statebystate computation, aggregating states at the leaves of these trees and requiring computations only for each aggregate state. The key to these algorithms is a decisiontheoretic generalization of classic regression analysis, in which we determine the features relevant to predicting expected value. We demonstrate the method empirically on several planning problems,
Sequential optimality and coordination in multiagent systems
 In International Joint Conference on Artificial Intelligence
, 1999
"... Coordination of agent activities is a key problem in multiagent systems. Set in a larger decision theoretic context, the existence of coordination problems leads to difficulty in evaluating the utility of a situation. This in turn makes defining optimal policies for sequential decision processes pro ..."
Abstract

Cited by 144 (3 self)
 Add to MetaCart
Coordination of agent activities is a key problem in multiagent systems. Set in a larger decision theoretic context, the existence of coordination problems leads to difficulty in evaluating the utility of a situation. This in turn makes defining optimal policies for sequential decision processes problematic. We propose a method for solving sequential multiagent decision problems by allowing agents to reason explicitly about specific coordination mechanisms. We define an extension of value iteration in which the system’s state space is augmented with the state of the coordination mechanism adopted, allowing agents to reason about the short and long term prospects for coordination, the long term consequences of (mis)coordination, and make decisions to engage or avoid coordination problems based on expected value. We also illustrate the benefits of mechanism generalization. 1
Symbolic Dynamic Programming for Firstorder MDPs
 In IJCAI
, 2001
"... We present a dynamic programming approach for the solution of firstorder Markov decisions processes. This technique uses an MDP whose dynamics is represented in a variant of the situation calculus allowing for stochastic actions. It produces a logical description of the optimal value function and p ..."
Abstract

Cited by 134 (4 self)
 Add to MetaCart
We present a dynamic programming approach for the solution of firstorder Markov decisions processes. This technique uses an MDP whose dynamics is represented in a variant of the situation calculus allowing for stochastic actions. It produces a logical description of the optimal value function and policy by constructing a set of firstorder formulae that minimally partition state space according to distinctions made by the value function and policy. This is achieved through the use of an operation known as decisiontheoretic regression. In effect, our algorithm performs value iteration without explicit enumeration of either the state or action spaces of the MDP. This allows problems involving relational fluents and quantification to be solved without requiring explicit state space enumeration or conversion to propositional form. 1
Efficient Solution Algorithms for Factored MDPs
, 2003
"... This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the re ..."
Abstract

Cited by 129 (4 self)
 Add to MetaCart
This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MDPs can grow exponentially in the representation size. In this paper, we present two approximate solution algorithms that exploit structure in factored MDPs. Both use an approximate value function represented as a linear combination of basis functions, where each basis function involves only a small subset of the domain variables. A key contribution of this paper is that it shows how the basic operations of both algorithms can be performed efficiently in closed form, by exploiting both additive and contextspecific structure in a factored MDP. A central element of our algorithms is a novel linear program decomposition technique, analogous to variable elimination in Bayesian networks, which reduces an exponentially large LP to a provably equivalent, polynomialsized one. One algorithm uses approximate linear programming, and the second approximate dynamic programming. Our dynamic programming algorithm is novel in that it uses an approximation based on maxnorm, a technique that more directly minimizes the terms that appear in error bounds for approximate MDP algorithms. We provide experimental results on problems with over 10^40 states, demonstrating a promising indication of the scalability of our approach, and compare our algorithm to an existing stateoftheart approach, showing, in some problems, exponential gains in computation time.