Results 1 
2 of
2
A new approach to the maximum flow problem
 Journal of the ACM
, 1988
"... Abstract. All previously known efftcient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on ..."
Abstract

Cited by 514 (31 self)
 Add to MetaCart
Abstract. All previously known efftcient maximumflow algorithms work by finding augmenting paths, either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortestlength augmenting paths at once (using the layered network approach of Dinic). An alternative method based on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow in the original network and pushes local flow excess toward the sink along what are estimated to be shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as any other known method on dense. graphs, achieving an O(n)) time bound on an nvertex graph. By incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm running in O(nm log(n’/m)) time on an nvertex, medge graph. This is as fast as any known method for any graph density and faster on graphs of moderate density. The algorithm also admits efticient distributed and parallel implementations. A parallel implementation running in O(n’log n) time using n processors and O(m) space is obtained. This time bound matches that of the ShiloachVishkin algorithm, which also uses n processors but requires O(n’) space.
A Fast and Simple Algorithm for the Maximum Flow Problem
 OPERATIONS RESEARCH
, 1989
"... We present a simple sequential algorithm for the maximum flow problem on a network with n nodes, m arcs, and integer arc capacities bounded by U. Under the practical assumption that U is polynomially bounded in n, our algorithm runs in time O(nm + n 2 log n). This result improves the previous best b ..."
Abstract

Cited by 32 (6 self)
 Add to MetaCart
We present a simple sequential algorithm for the maximum flow problem on a network with n nodes, m arcs, and integer arc capacities bounded by U. Under the practical assumption that U is polynomially bounded in n, our algorithm runs in time O(nm + n 2 log n). This result improves the previous best bound of O(nm log(n 2 /m)), obtained by Goldberg and Taran, by a factor of log n for networks that are both nonsparse and nondense without using any complex data structures. We also describe a parallel implementation of the algorithm that runs in O(n'log U log p) time in the PRAM model with EREW and uses only p processors where p = [m/n