Results 1  10
of
21
Beyond The Universal Turing Machine
, 1998
"... We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a phi ..."
Abstract

Cited by 31 (1 self)
 Add to MetaCart
We describe an emerging field, that of nonclassical computability and nonclassical computing machinery. According to the nonclassicist, the set of welldefined computations is not exhausted by the computations that can be carried out by a Turing machine. We provide an overview of the field and a philosophical defence of its foundations.
Recursive analysis characterized as a class of real recursive functions
 Fundamenta Informaticae
, 2006
"... Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real r ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.
Computations via experiments with kinematic systems
, 2004
"... Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be des ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
Consider the idea of computing functions using experiments with kinematic systems. We prove that for any set A of natural numbers there exists a 2dimensional kinematic system BA with a single particle P whose observable behaviour decides n ∈ A for all n ∈ N. The system is a bagatelle and can be designed to operate under (a) Newtonian mechanics or (b) Relativistic mechanics. The theorem proves that valid models of mechanical systems can compute all possible functions on discrete data. The proofs show how any information (coded by some A) can be embedded in the structure of a simple kinematic system and retrieved by simple observations of its behaviour. We reflect on this undesirable situation and argue that mechanics must be extended to include a formal theory for performing experiments, which includes the construction of systems. We conjecture that in such an extended mechanics the functions computed by experiments are precisely those computed by algorithms. We set these theorems and ideas in the context of the literature on the general problem “Is physical behaviour computable? ” and state some open problems.
Computational complexity with experiments as oracles
, 2008
"... We discuss combining physical experiments with machine computations and introduce a form of analoguedigital Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of analoguedigital ma ..."
Abstract

Cited by 13 (10 self)
 Add to MetaCart
We discuss combining physical experiments with machine computations and introduce a form of analoguedigital Turing machine. We examine in detail a case study where an experimental procedure based on Newtonian kinematics is combined with a class of Turing machines. Three forms of analoguedigital machine are studied, in which physical parameters can be set exactly and approximately. Using nonuniform complexity theory, and some probability, we prove theorems that show that these machines can compute more than classical Turing machines. 1
The Broad Conception Of Computation
 American Behavioral Scientist
, 1997
"... A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, somet ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
A myth has arisen concerning Turing's paper of 1936, namely that Turing set forth a fundamental principle concerning the limits of what can be computed by machine  a myth that has passed into cognitive science and the philosophy of mind, to wide and pernicious effect. This supposed principle, sometimes incorrectly termed the 'ChurchTuring thesis', is the claim that the class of functions that can be computed by machines is identical to the class of functions that can be computed by Turing machines. In point of fact Turing himself nowhere endorses, nor even states, this claim (nor does Church). I describe a number of notional machines, both analogue and digital, that can compute more than a universal Turing machine. These machines are exemplars of the class of nonclassical computing machines. Nothing known at present rules out the possibility that machines in this class will one day be built, nor that the brain itself is such a machine. These theoretical considerations undercut a numb...
Upper and Lower Bounds on ContinuousTime Computation
"... We consider various extensions and modifications of Shannon's General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive function ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We consider various extensions and modifications of Shannon's General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive functions, the elementary functions, the levels of the Grzegorczyk hierarchy, and the arithmetical and analytical hierarchies.
An analog characterization of the subrecursive functions
 PROC. 4TH CONFERENCE ON REAL NUMBERS AND COMPUTERS
, 2000
"... We study a restricted version of Shannon’s General Purpose Analog Computer in which we only allow the machine to solve linear differential equations. This corresponds to only allowing local feedback in the machine’s variables. We show that if this computer is allowed to sense inequalities in a dif ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We study a restricted version of Shannon’s General Purpose Analog Computer in which we only allow the machine to solve linear differential equations. This corresponds to only allowing local feedback in the machine’s variables. We show that if this computer is allowed to sense inequalities in a differentiable way, then it can compute exactly the elementary functions. Furthermore, we show that if the machine has access to an oracle which computes a function f(x) with a suitable growth as x goes to infinity, then it can compute functions on any given level of the Grzegorczyk hierarchy. More precisely, we show that the model contains exactly the nth level of the Grzegorczyk hierarchy if it is allowed to solve n − 3 nonlinear differential equations of a certain kind. Therefore, we claim that there is a close connection between analog complexity classes, and the dynamical systems that compute them, and classical sets of subrecursive functions.
A network model of analogue computation over metric algebras
 Torenvliet (Eds.), Computability in Europe, 2005, Springer Lecture Notes in Computer Science
, 2005
"... Abstract. We define a general concept of a network of analogue modules connected by channels, processing data from a metric space A, and operating with respect to a global continuous clock T. The inputs and outputs of the network are continuous streams u: T → A, and the inputoutput behaviour of the ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
Abstract. We define a general concept of a network of analogue modules connected by channels, processing data from a metric space A, and operating with respect to a global continuous clock T. The inputs and outputs of the network are continuous streams u: T → A, and the inputoutput behaviour of the network with system parameters from A is modelled by a function Φ: C[T,A] p ×A r →C[T,A] q (p, q> 0,r ≥ 0), where C[T,A] is the set of all continuous streams equipped with the compactopen topology. We give an equational specification of the network, and a semantics which involves solving a fixed point equation over C[T,A] using a contraction principle. We analyse a case study involving a mechanical system. Finally, we introduce a custommade concrete computation theory over C[T,A] and show that if the modules are concretely computable then so is the function Φ. 1