Results 11  20
of
187
Symbolic and neural learning algorithms: an experimental comparison
 Machine Learning
, 1991
"... Abstract Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with ..."
Abstract

Cited by 99 (6 self)
 Add to MetaCart
Abstract Despite the fact that many symbolic and neural network (connectionist) learning algorithms address the same problem of learning from classified examples, very little is known regarding their comparative strengths and weaknesses. Experiments comparing the ID3 symbolic learning algorithm with the perception and backpropagation neural learning algorithms have been performed using five large, realworld data sets. Overall, backpropagation performs slightly better than the other two algorithms in terms of classification accuracy on new examples, but takes much longer to train. Experimental results suggest that backpropagation can work significantly better on data sets containing numerical data. Also analyzed empirically are the effects of (1) the amount of training data, (2) imperfect training examples, and (3) the encoding of the desired outputs. Backpropagation occasionally outperforms the other two systems when given relatively small amounts of training data. It is slightly more accurate than ID3 when examples are noisy or incompletely specified. Finally, backpropagation more effectively utilizes a "distributed " output encoding.
A New Approximate Maximal Margin Classification Algorithm
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2001
"... A new incremental learning algorithm is described which approximates the maximal margin hyperplane w.r.t. norm p 2 for a set of linearly separable data. Our algorithm, called alma p (Approximate Large Margin algorithm w.r.t. norm p), takes O (p 1) 2 2 corrections to separate the data wi ..."
Abstract

Cited by 87 (6 self)
 Add to MetaCart
A new incremental learning algorithm is described which approximates the maximal margin hyperplane w.r.t. norm p 2 for a set of linearly separable data. Our algorithm, called alma p (Approximate Large Margin algorithm w.r.t. norm p), takes O (p 1) 2 2 corrections to separate the data with pnorm margin larger than (1 ) , where is the (normalized) pnorm margin of the data. alma p avoids quadratic (or higherorder) programming methods. It is very easy to implement and is as fast as online algorithms, such as Rosenblatt's Perceptron algorithm. We performed extensive experiments on both realworld and artificial datasets. We compared alma 2 (i.e., alma p with p = 2) to standard Support vector Machines (SVM) and to two incremental algorithms: the Perceptron algorithm and Li and Long's ROMMA. The accuracy levels achieved by alma 2 are superior to those achieved by the Perceptron algorithm and ROMMA, but slightly inferior to SVM's. On the other hand, alma 2 is quite faster and easier to implement than standard SVM training algorithms. When learning sparse target vectors, alma p with p > 2 largely outperforms Perceptronlike algorithms, such as alma 2 .
NeuroAnimator: Fast Neural Network Emulation and Control of PhysicsBased Models
, 1998
"... Animation through the numerical simulation of physicsbased graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physicsbased models to produce desired animations usually entails formidable computational cost. This paper de ..."
Abstract

Cited by 84 (3 self)
 Add to MetaCart
Animation through the numerical simulation of physicsbased graphics models offers unsurpassed realism, but it can be computationally demanding. Likewise, finding controllers that enable physicsbased models to produce desired animations usually entails formidable computational cost. This paper demonstrates the possibility of replacing the numerical simulation and control of model dynamics with a dramatically more efficient alternative. In particular, we propose the NeuroAnimator, a novel approach to creating physically realistic animation that exploits neural networks. NeuroAnimators are automatically trained offline to emulate physical dynamics through the observation of physicsbased models in action. Depending on the model, its neural network emulator can yield physically realistic animation one or two orders of magnitude faster than conventional numerical simulation. Furthermore, by exploiting the network structure of the NeuroAnimator, we introduce a fast algorithm for learning controllers that enables either physicsbased models or their neural network emulators to synthesize motions satisfying prescribed animation goals. We demonstrate NeuroAnimators for passive and active (actuated) rigid body, articulated, and deformable physicsbased models.
General convergence results for linear discriminant updates
 Machine Learning
, 1997
"... Abstract. The problem of learning lineardiscriminant concepts can be solved by various mistakedriven update procedures, including the Winnow family of algorithms and the wellknown Perceptron algorithm. In this paper we define the general class of “quasiadditive ” algorithms, which includes Perce ..."
Abstract

Cited by 84 (0 self)
 Add to MetaCart
Abstract. The problem of learning lineardiscriminant concepts can be solved by various mistakedriven update procedures, including the Winnow family of algorithms and the wellknown Perceptron algorithm. In this paper we define the general class of “quasiadditive ” algorithms, which includes Perceptron and Winnow as special cases. We give a single proof of convergence that covers a broad subset of algorithms in this class, including both Perceptron and Winnow, but also many new algorithms. Our proof hinges on analyzing a generic measure of progress construction that gives insight as to when and how such algorithms converge. Our measure of progress construction also permits us to obtain good mistake bounds for individual algorithms. We apply our unified analysis to new algorithms as well as existing algorithms. When applied to known algorithms, our method “automatically ” produces close variants of existing proofs (recovering similar bounds)—thus showing that, in a certain sense, these seemingly diverse results are fundamentally isomorphic. However, we also demonstrate that the unifying principles are more broadly applicable, and analyze a new class of algorithms that smoothly interpolate between the additiveupdate behavior of Perceptron and the multiplicativeupdate behavior of Winnow.
Perspectives on system identification
 In Plenary talk at the proceedings of the 17th IFAC World Congress, Seoul, South Korea
, 2008
"... System identification is the art and science of building mathematical models of dynamic systems from observed inputoutput data. It can be seen as the interface between the real world of applications and the mathematical world of control theory and model abstractions. As such, it is an ubiquitous ne ..."
Abstract

Cited by 77 (2 self)
 Add to MetaCart
System identification is the art and science of building mathematical models of dynamic systems from observed inputoutput data. It can be seen as the interface between the real world of applications and the mathematical world of control theory and model abstractions. As such, it is an ubiquitous necessity for successful applications. System identification is a very large topic, with different techniques that depend on the character of the models to be estimated: linear, nonlinear, hybrid, nonparametric etc. At the same time, the area can be characterized by a small number of leading principles, e.g. to look for sustainable descriptions by proper decisions in the triangle of model complexity, information contents in the data, and effective validation. The area has many facets and there are many approaches and methods. A tutorial or a survey in a few pages is not quite possible. Instead, this presentation aims at giving an overview of the “science ” side, i.e. basic principles and results and at pointing to open problem areas in the practical, “art”, side of how to approach and solve a real problem. 1.
Neural Methods for Dynamic Branch Prediction
 ACM Transactions on Computer Systems
, 2002
"... This paper presents a new method for branch prediction that is highly accurate. The key idea is to use one of the simplest possible neural methods, the perceptron, as an alternative to the commonly used twobit counters. The source of our predictor's accuracy is its ability to use long history lengt ..."
Abstract

Cited by 76 (9 self)
 Add to MetaCart
This paper presents a new method for branch prediction that is highly accurate. The key idea is to use one of the simplest possible neural methods, the perceptron, as an alternative to the commonly used twobit counters. The source of our predictor's accuracy is its ability to use long history lengths, because the hardware resources for our method scale linearly, rather than exponentially, with the history length.
The Relaxed Online Maximum Margin Algorithm
 Machine Learning
, 2000
"... We describe a new incremental algorithm for training linear threshold functions: the Relaxed Online Maximum Margin Algorithm, or ROMMA. ROMMA can be viewed as an approximation to the algorithm that repeatedly chooses the hyperplane that classifies previously seen examples correctly with the maximum ..."
Abstract

Cited by 73 (1 self)
 Add to MetaCart
We describe a new incremental algorithm for training linear threshold functions: the Relaxed Online Maximum Margin Algorithm, or ROMMA. ROMMA can be viewed as an approximation to the algorithm that repeatedly chooses the hyperplane that classifies previously seen examples correctly with the maximum margin. It is known that such a maximummargin hypothesis can be computed by minimizing the length of the weight vector subject to a number of linear constraints. ROMMA works by maintaining a relatively simple relaxation of these constraints that can be eciently updated. We prove a mistake bound for ROMMA that is the same as that proved for the perceptron algorithm. Our analysis implies that the more computationally intensive maximummargin algorithm also satis es this mistake bound; this is the rst worstcase performance guarantee for this algorithm. We describe some experiments using ROMMA and a variant that updates its hypothesis more aggressively as batch algorithms to recognize handwr...
Classifying Gprotein coupled receptors with support vector machines
 Bioinformatics
, 2001
"... Motivation: The enormous amount of protein sequence data uncovered by genome research has increased the demand for computer software that can automate the recognition of new proteins. We discuss the relative merits of various automated methods for recognizing Gprotein coupled receptors (GPCRs), a ..."
Abstract

Cited by 69 (3 self)
 Add to MetaCart
Motivation: The enormous amount of protein sequence data uncovered by genome research has increased the demand for computer software that can automate the recognition of new proteins. We discuss the relative merits of various automated methods for recognizing Gprotein coupled receptors (GPCRs), a superfamily of cell membrane proteins. GPCRs are found in a wide range of organisms and are central to a cellular signalling network that regulates many basic physiological processes. They are the focus of a signicant amount of current pharmaceutical research because they play a key role in many diseases. However, their tertiary structures remain largely unsolved. The methods described in this paper use only primary sequence information to make their predictions. We compare a simple nearest neighbor approach (BLAST), methods based on multiple alignments generated by a statistical prole hidden Markov model, and methods, including support vector machines, that transform protein sequences into xedlength feature vectors. Results: The last is the most computationally expensive method, but our experiments show that, for those interested in annotationquality classication, the results are worth the eort. In twofold crossvalidation experiments testing recognition of GPCR subfamilies that bind a specic ligand (such as a histamine molecule), the errors per sequence at the minimum error point (MEP) were 13.7% for multiclass SVMs, 17.1% for our SVMtree method of hierarchical multiclass SVM classication, 25.5% for BLAST, 30% for prole HMMs, and 49% for classication based on nearest neighbor feature vector (kernNN). The percentage of true positives recognized before the rst false positive was 65% for both SVM methods, 13% for BLAST, 5% for prole HMMs and 4% ...
The Role of Constraints in Hebbian Learning
 NEURAL COMPUTATION
, 1994
"... Models of unsupervised correlationbased (Hebbian) synaptic plasticity are typically unstable: either all synapses grow until each reaches the maximum allowed strength, or all synapses decay to zero strength. A common method of avoiding these outcomes is to use a constraint that conserves or limi ..."
Abstract

Cited by 63 (4 self)
 Add to MetaCart
Models of unsupervised correlationbased (Hebbian) synaptic plasticity are typically unstable: either all synapses grow until each reaches the maximum allowed strength, or all synapses decay to zero strength. A common method of avoiding these outcomes is to use a constraint that conserves or limits the total synaptic strength over a cell. We study the dynamical effects of such constraints. Two methods of enforcing a constraint are distinguished, multiplicative and subtractive. For otherwise linear learning rules, multiplicative enforcement of a constraint results in dynamics that converge to the principal eigenvector of the operator determining unconstrained synaptic development. Subtractive enforcement, in contrast, typically leads to a final state in which almost all synaptic strengths reach either the maximum or minimum allowed value. This final state is often dominated by weight configurations other than the principal eigenvector of the unconstrained operator. Multiplica...
Adaptive and SelfConfident OnLine Learning Algorithms
, 2000
"... We study online learning in the linear regression framework. Most of the performance bounds for online algorithms in this framework assume a constant learning rate. To achieve these bounds the learning rate must be optimized based on a posteriori information. This information depends on the wh ..."
Abstract

Cited by 62 (7 self)
 Add to MetaCart
We study online learning in the linear regression framework. Most of the performance bounds for online algorithms in this framework assume a constant learning rate. To achieve these bounds the learning rate must be optimized based on a posteriori information. This information depends on the whole sequence of examples and thus it is not available to any strictly online algorithm. We introduce new techniques for adaptively tuning the learning rate as the data sequence is progressively revealed. Our techniques allow us to prove essentially the same bounds as if we knew the optimal learning rate in advance. Moreover, such techniques apply to a wide class of online algorithms, including pnorm algorithms for generalized linear regression and Weighted Majority for linear regression with absolute loss. Our adaptive tunings are radically dierent from previous techniques, such as the socalled doubling trick. Whereas the doubling trick restarts the online algorithm several ti...